2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

A Novel Implementation of Multilevel Fast Multipole Algorithm for Higher Order Galerkin's Method

Kalyan C. Donepudi, Jiming Song, Senior Member, IEEE Jian-Ming Jin, Senior Member, IEEE Gang Kang and Weng Cho Chew Fellow, IEEE

Page 1192.

Abstract:

A new approach is proposed to reduce the memory requirements of the multilevel fast multipole algorithm (MLFMA) when applied to the higher order Galerkin's method. This approach represents higher order basis functions by a set of point sources such that a matrix-vector multiply is equivalent to calculating the fields at a number of points from given current sources at these points. The MLFMA is then applied to calculate the point-to-point interactions. This permits the use of more levels in MLFMA than applying MLFMA to basis-to-basis interactions directly and, thus, reduces the memory requirements significantly.

References

  1. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  409-418,  May  1982.
  2. R. Coifman, V. Rokhlin and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription", IEEE Antennas Propagat. Mag., vol. 35, no.  3, pp.  7-12, June  1993.
  3. J. M. Song and W.C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering", Microwave Opt. Tech. Lett., vol. 10, no. 1, pp.  14-19, Sept.  1995.
  4. J. M. Song, C.C. Lu and W. C. Chew, "MLFMA for electromagnetic scattering from large complex objects", IEEE Trans. Antennas Propagat., vol. 45, pp.  1488-1493,  Oct.  1997.
  5. J. M. Song, C. C. Lu, W. C. Chew and S. W. Lee, "Fast Illinois solver code (FISC)", IEEE Antennas Propagat. Mag., vol. 40, no. 3, pp.  27-34, June   1998.
  6. J. M. Song and W. C. Chew, "The fast Illinois solver code: Requirements and scaling properties", IEEE Comput. Sci. Eng., vol. 5, no. 3, pp.  19-23, July-Sept.  1998.
  7. S. Velamparambil, J. M. Song and W. C. Chew, "A portable parallel multilevel fast multipole solver for scattering from perfectly conducting bodies", in IEEE APS Int. Symp. Dig., vol. 1, Orlando, FL, July 1999, pp.  648-651. 
  8. S. Velamparambil and W. C. Chew, "ScaleME: Application interface. A programmer's guide and reference", Univ. Illinois, Urbana-Champaign, Tech. Rep. CCEM-27-99, Oct. 1999.
  9. S. Velamparambil, J. M. Song and W. C. Chew, "ScaleME: A portable, distributed memory multilevel fast multipole kernel for electromagnetic and acoustic integral equation solvers", Univ. Illinois, Urbana-Champaign, Tech. Rep. CCEM-23-99, Sept. 1999.
  10. R. D. Graglia, D. R. Wilton and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics", IEEE Trans. Antennas Propagat., vol. 45, pp.  329-342, Mar.  1997.
  11. K. Donepudi, G. Kang, J. M. Song, J. M. Jin and W. C. Chew, "Higher order MoM implementation to solve integral equations", in IEEE APS Int. Symp. Dig., vol. 3, Orlando, FL, July 1999, pp.  1716-1719. 
  12. K. Donepudi, J. M. Jin, S. Velamparambil, J. M. Song and W. C. Chew, "A higher order parallelized multilevel fast multipole algorithm for 3-D scattering", IEEE Trans. Antennas Propagat., to be published.
  13. L. S. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher and S. Wandzura, "Numerical solution of the Helmholtz equation in 2-D and 3-D using a high-order Nyström discretization", J. Comput. Phys., vol. 146, pp.  627-663, 1998.
  14. S. Velamparambil, J. Schutt-Aine, J. Nickel, J. M. Song and W. C. Chew, "Solving large scale electromagnetic problems using a linux cluster and parallel MLFMA", in IEEE APS Int. Symp. Dig., vol. 1, Orlando, FL, July 1999, pp.  636-639.