2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000
Table of Contents for this issue
Complete paper in PDF format
Ultimate Thickness to Bandwidth
Ratio of Radar Absorbers
Konstantin N. Rozanov
Page 1230.
Abstract:
Analytic properties of the reflection coefficient of a multilayer
metal-backed slab are considered. The result is a new form of the dispersion
relationship, which characterizes the integral of the reflectance over wavelength
in terms of the total thickness and averaged static permeability of the slab.
The relation may be transformed to an inequality, which produces the least
thickness to bandwidth ratio achievable for a physically realizable radar
absorber. The particular cases of broad-band and narrow-band absorbers are
discussed. The least thickness of a 10-dB broad-band dielectric radar absorber
is shown to be 1/17 of the largest operating wavelength. The discussion also
involves the results of numerical study.
References
-
G. Ruck, D. E. Barrick, W. D. Stuart and C. K. Krichbaum, Radar Cross Section Handbook, New York:
Plenum,
1970,vol. 2,ch. 8.
-
E. F. Knott, J. F. Shaeffer and M. T. Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction, Dedham, MA: Artech House, 1986, ch.
9.
-
K. J. Vinoy and K. M. Jha,
Radar Absorbing Materials, Dodrecht: The Netherlands: Kluwer, 1996.
-
P. Pottel, "Uber die erhohung der frequenzbandbreite danner"
/4 -schicht"absorber fur electromagnetische zentimmeterwellen", Zeitschrift fur Angewandte Physik, vol. 11, no.
2, pp. 46-51, 1959.
-
J. L. Wallace, "Broad-band magnetic microwave absorbers: Fundamental limitations", IEEE Trans. Magn., vol. MAG-29, pp.
4209-4214, Nov.
1993.
-
A. P. Vinogradov, A. N. Lagarkov, A. K. Sarychev and I. G. Sterlina, "Multi-layer composite radar absorbers", J. Commun. Technol. Electron., vol. 41, no. 2, p.
158, Feb. 1996.
-
J. J. Pesque, D. P. Bouche and R. Mittra, "Optimization of multilayer antireflection coatings using an optimal control method", IEEE Trans. Microwave Theory Tech., vol.
40, pp. -1789, Sept. 1990.
-
H. M. Nussenzveig, Causality and Dispersion Relations, New York: Academic, 1972.
-
L. M. Brechovskikh, Waves in Layered Media,
New York: Academic, 1960.
-
R. M. Fano, "Theoretical limitations on the broadband matching of arbitrary impedances", J. Franklin Inst., vol. 249, no.
1-2, pp.
57-83, 139-154, Jan 1950.
-
L. D. Landau and E. M. Livshitz, Electrodynamics of Continuous Media, Oxford: U.K.:
Pergamon, 1984.
-
A. N. Lagarkov, S. M. Matytsin, K. N. Rozanov and A. K. Sarychev, "Dielectric permittivity of fiber-filled composites", J. Appl. Phys., vol. 84, no. 7, p. 3806, Oct. 1998.
-
K. N. Rozanov and S. N. Starostenko, "Numerical study of bandwidth of radar absorbers", Eur. Phys. J. Appl. Phys., vol. 8, no.
2, pp. 147-151, Nov. 1999.
-
K. N. Rozanov, "Experimental study of microwave properties of composites filled with
conducting fibers", Ph.D. dissertation,
IVTAN, Moscow, Russia, 1991.
-
A. P. Prudnikov, Y. A. Brychkov and O. I. Marychev, Integrals and Sums. Elementary Functions, Moscow: Russia: Nauka, 1981, p. 688.