2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Ultimate Thickness to Bandwidth Ratio of Radar Absorbers

Konstantin N. Rozanov

Page 1230.

Abstract:

Analytic properties of the reflection coefficient of a multilayer metal-backed slab are considered. The result is a new form of the dispersion relationship, which characterizes the integral of the reflectance over wavelength in terms of the total thickness and averaged static permeability of the slab. The relation may be transformed to an inequality, which produces the least thickness to bandwidth ratio achievable for a physically realizable radar absorber. The particular cases of broad-band and narrow-band absorbers are discussed. The least thickness of a 10-dB broad-band dielectric radar absorber is shown to be 1/17 of the largest operating wavelength. The discussion also involves the results of numerical study.

References

  1. G. Ruck, D. E. Barrick, W. D. Stuart and C. K. Krichbaum, Radar Cross Section  Handbook, New York: Plenum, 1970,vol. 2,ch. 8.
  2. E. F. Knott, J. F. Shaeffer and M. T. Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction, Dedham, MA: Artech House, 1986, ch. 9.
  3. K. J. Vinoy and K. M. Jha, Radar Absorbing Materials, Dodrecht: The Netherlands: Kluwer, 1996.
  4. P. Pottel, "Uber die erhohung der frequenzbandbreite danner" /4 -schicht"absorber fur electromagnetische zentimmeterwellen", Zeitschrift fur Angewandte Physik, vol. 11, no.  2, pp.  46-51, 1959.
  5. J. L. Wallace, "Broad-band magnetic microwave absorbers: Fundamental limitations", IEEE Trans. Magn., vol. MAG-29, pp.  4209-4214, Nov.  1993.
  6. A. P. Vinogradov, A. N. Lagarkov, A. K. Sarychev and I. G. Sterlina, "Multi-layer composite radar absorbers", J. Commun. Technol. Electron., vol. 41, no. 2, p.  158, Feb.  1996.
  7. J. J. Pesque, D. P. Bouche and R. Mittra, "Optimization of multilayer antireflection coatings using an optimal control method", IEEE Trans. Microwave Theory Tech., vol.  40, pp. -1789, Sept.  1990.
  8. H. M. Nussenzveig, Causality and Dispersion Relations, New York: Academic, 1972.
  9. L. M. Brechovskikh, Waves in Layered Media, New York: Academic, 1960.
  10. R. M. Fano, "Theoretical limitations on the broadband matching of arbitrary impedances", J. Franklin Inst., vol. 249, no.  1-2, pp.  57-83, 139-154, Jan  1950.
  11. L. D. Landau and E. M. Livshitz, Electrodynamics of Continuous Media, Oxford: U.K.: Pergamon, 1984.
  12. A. N. Lagarkov, S. M. Matytsin, K. N. Rozanov and A. K. Sarychev, "Dielectric permittivity of fiber-filled composites", J. Appl. Phys., vol. 84, no. 7, p.  3806, Oct.  1998.
  13. K. N. Rozanov and S. N. Starostenko, "Numerical study of bandwidth of radar absorbers", Eur. Phys. J. Appl. Phys., vol. 8, no.  2, pp.  147-151, Nov.  1999.
  14. K. N. Rozanov, "Experimental study of microwave properties of composites filled with conducting fibers", Ph.D. dissertation, IVTAN, Moscow, Russia, 1991.
  15. A. P. Prudnikov, Y. A. Brychkov and O. I. Marychev, Integrals and Sums. Elementary Functions, Moscow: Russia: Nauka, 1981, p.  688.