2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Acceleration of On-Surface MEI Method by New Metrons and FMM for 2-D Conducting Scattering

Y. W. Liu, Y. W. Zhao and K. K. Mei

Page 1255.

Abstract:

In this paper, a new kind of metron is proposed and rapid integration provided by fast multipole methods (FMM) is implemented to dramatically reduce the CPU time of finding the MEI coefficients in the on-surface measured equation of invariance (OSMEI) method. The numerical example of the scattering of a large conducting elliptical cylinder shows that the computation speed is at least one order of magnitude faster than that of the original OSMEI, where sinusoidal metrons are used, and about 25% faster than that of the FMM, where the iteration method is used.

References

  1. K. K. Mei, R. Pous, Z. Q. Chen, Y. W. Liu and M. Prouty, "The measured equation of invariance: A new concept in field computation", IEEE Trans. Antennas Propagat., vol. 42, pp.  202-214, Mar.  1994.
  2. J. M. Rius, R. Pous and A. Cardama, "Integral formulation of the measured equation of invariance: A novel sparse matrix boundary element method", IEEE Trans. Magn., vol. 32, pp.  962-967, May  1996.
  3. Y. W. Liu, K. K. MEI and K. N. Yung, "Differential formulation of on-surface measured equation of invariance for 2-D conducting scattering", IEEE Microwave Guided Wave Lett., vol. 8, pp.  99-101, Feb.  1998.
  4. H. Hirose et al., "New integral formulation of the measured equation of invariance to analyze two dimensional cylinders with impedance boundary condition", in IEEE Antennas Propagat. Soc. Int. Symp. Dig., Atlanta, GA, June 1998, pp.  1042-1045. 
  5. Y. W. Liu, K. N. Yung and K. K. Mei, "Interpolation, extrapolation and application of the measured equation of invariance to scattering by very large cylinders", IEEE Trans. Antennas Propagat., vol. 45, pp.  1325-1331, Sept.  1997.
  6. V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions", J. Computat. Phys., vol. 86, no. 2, pp.  414-439, 1990.
  7. R. L. Wagner and C. C. Chew, "A ray-propagation fast multipole algorithm", Microwave Opt. Technol. Lett., vol. 7, no. 10, pp.  435-438, July  1994.
  8. J. M. Song, C. C. Lu and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects", IEEE Trans. Antennas Propagat., vol. 45, pp.  1488-1493, Oct.  1997.
  9. N. Morita, N. Kumagai and J. R. Mauts, Integral Equation Methods for Electromagnetics, Boston, MA: Artech House, 1990.
  10. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover, 1972.