2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Efficient Linear System Solution in Moment Methods Using Wavelet Expansions

L. Tarricone and F. Malucelli

Page 1257.

Abstract:

An efficient strategy is proposed to solve linear systems encountered when method of moments (MoM) and wavelet expansions are used. It exploits a high-performance matrix bandwidth reduction algorithm so that it can be taken advantage of direct banded solvers, which have a more favorable computational complexity with respect to the typically used iterative sparse methods. Speedups of up to seven have been experienced with respect to standard iterative sparse solvers.

References

  1. B. Z. Steinberg and Y. Leviathan, "On the use of wavelet expansions in the method of moments", IEEE Trans. Antennas Propagat., vol. 41, pp.  610-619,  May  1993.
  2. B. Z. Steinberg and Y. Leviathan, "A multiresolution study of 2-D scattering by metallic cylinders", IEEE Trans. Antennas Propagat., vol. 44, pp.  572-579, Apr.  1996.
  3. J. C. Goswami, A. K. Chan and C. K. Chui, "On solving first-kind integral equations using wavelets on a bounded interval", IEEE Trans. Antennas Propagat., vol. 43, pp.  614-622, June  1995.
  4. R. L. Wagner and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations", IEEE Trans. Antennas Propagat., vol. 43, pp.  802-810,  Aug.  1995.
  5. G. Wang, "Analysis of EM scattering from conducting bodies of revolution using orthogonal wavelet expansions", IEEE Trans. Electromagn. Compat., vol. 40, pp.  1-11, Feb.  1998.
  6. G. Wang, "On the utilization of periodic wavelets expansions in the moment methods", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2495-2497, Oct.  1995.
  7. G. Wang and G. Pan, "Full-wave analysis of microstrip floating line structures by wavelet expansion method", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  131-142, Jan.  1995.
  8. K. Sabet and L. P. B. Katehi, "Analysis of integrated millimeter-wave and submillimeter-wave waveguides using orthonormal wavelet expansions", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2412 -2422, Dec.  1994.
  9. K. Sabet and L. P. B. Katehi, "An integral formulation of two-and three-dimensional dielectric structures using orthonormal multiresolution expansions", Int. J. Num. Modeling, vol. 11, pp.  3-19, 1998.
  10. G. Wang, G. Pan and B. K. Gilbert, "A hybrid wavelet expansion and boundary element analysis for multiconductor transmission lines in multilayered dielectric media", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  664-675, Mar.  1995.
  11. G. Wang, "A hybrid wavelet expansion and boundary element analysis for EM scattering from conducting objects", IEEE Trans. Antennas Propagat., vol. 43, pp.  170-178, Feb.  1995.
  12. A. Caproni, F. Cervelli, M. Mongiardo, L. Tarricone and F. Malucelli, "Bandwidth reduced full-wave simulation of lossless and thin planar microstrip circuits", J. Appl. Comput. Electromagn. Soc., vol. 13, no. 2, pp.  197-204, 1998.
  13. I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford: U.K.: Oxford Univ. Press, 1986.
  14. A. Esposito, F. Malucelli and L. Tarricone, "Bandwidth and profile reduction of sparse matrices: An experimental comparison of new heuristics,"in ALEX98, R. Battiti, and A. A. Bertossi, Eds. Trento Italy: 1998.
  15. E. Cuthill and E. J. McKee, "Reducing the bandwidth of sparse symmetric matrices", in Proc. ACM Nat. Conf., New York, Jan. 1969, pp.  157-172. 
  16. A. Esposito, S. Fiorenzo Catalano, F. Malucelli and L. Tarricone, "A new matrix bandwidth reduction algorithm", Oper. Res. Lett., vol. 23, no. 3-5, pp.  99-107,  1999.
  17. M. Dionigi, A. Esposito, R. Sorrentino and L. Tarricone, "A tabu search approach for an efficient solution of linear systems in electromagnetic problems", Int. J. Numer. Modeling, vol. 10, pp.  315-328, 1997.