2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Ground Wave of an Idealized Lightning Return Stroke

James R. Wait and David A. Hill Fellow, IEEE

Page 1349.

Abstract:

We model a lightning return stroke by a vertical traveling wave of current with a complex propagation constant. The Sommerfeld-integral analysis is similar to that of a vertical electric dipole over a lossy earth except that the source is distributed in height. When the integration over the source current is performed analytically, an extra term appears in addition to the classical Sommerfeld attenuation function. This term is a result of the height-gain function of the distributed source due to an effective elevated height of the source dipole moment. In most cases of interest, the extra term is small and the height-gain function is not much larger than one. The results have application to remote sensing of lightning from a ground-based observer.

References

  1. V. A. Rakov and M. A. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application", IEEE Trans. Electromagn. Compat., vol. 40, pp.  403-426, Nov.  1998.
  2. E. P. Krider, "On the electromagnetic fields, Poynting vector and peak power radiated by lightning return strokes", J. Geophys. Res., vol. 97, pp.  15 913-15 917, Oct.  1992.
  3. J. R. Wait, "Note on the fields of an upward-traveling current wave pulse", IEEE Trans. Electromagn. Compat., vol. 40, pp.  180-181, May  1998.
  4. F. Rachidi, C. A. Nucci, M. Ianoz and C. Mazzetti, "Influence of lossy ground on lightning-induced voltages on overhead lines", IEEE Trans. Electromagn. Compat., vol. 38, pp.  300-310,  Aug.  1996.
  5. J. R. Wait, Electromagnetic Waves in Stratified Media, New York: Pergamon, 1962.
  6. D. M. LeVine and J. C. Willett, "Comment on the transmission-line model for computing radiation from lightning", J. Geophys. Res., vol. 97, pp.  2601-2610,  Feb.  1992.
  7. H. K. Høidalen, J. Sletbak and T. Henriksen, "Ground effects from nearby lightning", IEEE Trans. Electromagn. Compat., vol. 39, pp.  269-278,  1997.
  8. J. R. Wait, "Radiation from dipoles in an idealized jungle environment", Radio Sci., vol. 2, pp.  747-750, July  1967.
  9. D. A. Hill, "HF ground wave propagation over forested and built-up terrain", NTIA (U.S. Dept. Commerce) Rep.,, Dec.  1982.
  10. D. A. Hill, "Radio-wave propagation from a forest to a clearing", Electromagn., vol. 6, pp.  217 -228, 1986.
  11. J. R. Wait, "Influence of finite ground conductivity on the fields of a vertical traveling wave of current", IEEE Trans. Electromagn. Compat., vol.  41, p.  78, Feb.  1999.
  12. A. Zeddam and P. Degauque, "Current and voltage induced on a telecommunications cable by a lightning stroke,"in Lightning Electromagn., R. L. Gardner, Ed. New York: Hemisphere, 1990, ch. 21.
  13. D. A. Hill and J. R. Wait, "Ground wave attenuation function for a spherical earth with arbitrary surface impedance", Radio Sci., vol. 15, pp.  637-643,  May-June  1980.