2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Radio Wave Propagation Characteristics in Lossy Circular Waveguides Such as Tunnels, Mine Shafts, and Boreholes

Christopher L. Holloway, Member, IEEE David A. Hill, Fellow, IEEE Roger A. Dalke and George A. Hufford Life Fellow, IEEE

Page 1354.

Abstract:

In this paper, we present the characteristics of radio propagation in a circular lossy waveguide whose walls are composed of earth soil materials with frequency-dependent properties. This type of structure is used to represent a radio link for an underground wireless communication channel such as a tunnel,mine shaft, or borehole. We present calculated results of the attenuation constant for various propagation modes in the soil waveguide structure for various soil constituents and moisture levels. Transverse field plots of the various modes for different soil types are also presented. Finally, it is shown that for small |k2 a| (where k2 is the wavenumber in the soil and a is the radius of the waveguide) some modes in the waveguide disappear and a discussion of this behavior and how it relates to excitation problems is given.

References

  1. J. R. Wait and D. A. Hill, "Propagation along a braided coaxial cable in a circular tunnel", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  401-405, May  1975.
  2. J. R. Wait and D. A. Hill, "Electromagnetic fields of a dipole source in a circular tunnel containing a surface wave line", Int. J. Electron., vol. 42, no. 4, pp.  377-391, 1977.
  3. D. A. Hill and J. R. Wait, "Analysis of radio frequency transmission in a semicircular mine tunnel containing two axial conductors", IEEE Trans. Commun., vol. COM-25, pp.  1046-1050, Sept.  1977.
  4. D. A. Hill and J. R. Wait, "Electromagnetic fields of a coaxial cable with an interrupted shield located in a circular tunnel", J. Appl. Phys., vol. 46, no. 10, pp.  4352-4356, 1975.
  5. S. F. Mahmoud and J. R. Wait, "Calculated channel characteristics of a braided coaxial cable in a mine tunnel", IEEE Trans. Commun., vol. COM-24, pp.  82-87, Jan.  1976.
  6. J. R. Wait and D. A. Hill, "Radio frequency transmission via a trolley wire in a tunnel with a rail return", IEEE Trans. Antennas Propagat., vol. AP-25, pp.  248-253, Mar.  1977.
  7. R. A. Waldron, Theory of Guided Electromagnetic Waves, London: U.K.: Van Nostrand Reinhold, 1969, ch. 4 and 7 .
  8. J. A. Stratton, Electromagnetic Theory, New York: McGraw-Hill, 1941, ch. 9.
  9. E. Snitzer, "Cylindrical dielectric waveguide modes", J. Opt. Soc. Amer., vol. 51, no. 5, pp.  491-498, 1961.
  10. C. Yeh and G. Lindgren, "Computing the propagation characteristics of radially stratified fibers: An efficient method", Appl. Optics, vol. 16, no. 2, 1977.
  11. A. W. Snyder, "Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.  1130-1138, Dec.  1969.
  12. Y. Yamaguchi and T. Sekiguchi, "Propagation characteristics of normal modes in hollow circular cylinder surrounded by dissipative medium", Trans. IECE Japan, vol. J-62, no.  4, pp.  368-373, 1979.
  13. J. I. Glaser, "Attenuation and guidance of modes on hollow dielectric waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.  173-174, Mar.  1969.
  14. T. Abe and Y. Yamaguchi, "Propagation constant below cutoff frequency in a circular waveguide with conducting medium", IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp.  707-712, July  1981.
  15. C. S. Lee, S.-W. Lee and S.-L. Chuang, "Normal modes in an overmoded circular waveguide coated with lossy material", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  773-785, July  1986.
  16. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers", Bell Syst. Tech. J., pp.  1783-1809, July  1964.
  17. J. Brown, "Corrections to the attenuation constants of piston attenuations", Proc. Inst. Elect. Eng., pp.  491-495, 1949 .
  18. C. Dragone, "Attenuation and radiation characteristics of the HE11-mode", IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp.  704-710, July  1980.
  19. N. S. Kapany and J. J. Burke, Optical Waveguides, New York: Academic, 1972.
  20. G. Biernson and D. J. Kinsley, "Generalized plots of mode patterns in a cylindrical dielectric waveguide applied to retinal cones", IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.  345-356, May  1965 .
  21. P. J. B. Clarricoats, "Propagation along unbounded and bounded dielectric rods: Part 2-Propagation along a dielectric rod", Proc. Inst. Elect. Eng., pp.  177-186, Oct.  1960.
  22. A. W. Snyder, "Excitation and scattering of modes on a dielectric or optical fiber", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.  1138-1144, Dec.  1969.
  23. J. C. Chiba, T. Inaba, Y. Kuwamoto, O. Banno and R. Sato, "Radio communication in tunnels", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  439-443, June   1978.
  24. M. Y. Antimirov, A. A. Kolyshkin and R. Vaillancourt, Complex Variables, New York: Academic, 1998.
  25. M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Application, New York: Cambridge Univ. Press, 1997.
  26. B. K. Singaraju, D. V. Giri and C. E. Baum, "Further developments in the application of contour integration to the evaluation of the zeros of analytic functions and relevant computer programs", Air Force Weapons Lab., Mathematics Note 42, Mar. 1976.
  27. A. G. Tijhuis and R. M. van der Weiden, "SEM approach to transient scattering by a lossy, radially inhomogeneous dielectric circular cylinder", Wave Motion, vol. 8, pp.  43-63, 1986.
  28. E. F. Kuester, D. C. Chang and S. W. Plate, "Electromagnetic wave propagation along horizontal wire systems in or near a layered earth", Electromagn., vol. 1, no. 1, pp.  243-265, 1981.
  29. S. W. Plate, D. C. Chang and E. F. Kuester, "Propagation modes on a buried leaky coaxial cable", Electromagn. Lab., Dept. Elect. Engrg., Univ. Colorado, Boulder, CO, Scientific Rep. 32, Mar. 1978.
  30. R. T. Ling, J. D. Scholler and P. Y. Ufimtsev, "The propagation and excitation of surface waves in an absorbing layer,"in Progress in Electromagnetic Research,PIER 19, J. A. Kong, Ed. Cambridge, MA: EMW, 1998, pp.  49-91. 
  31. M. T. Hallikainen, F. T. Ulaby, M. C. Dobson, M. A. El-Rayes and L.-K. Wu, "Microwave dielectric behavior of wet soil-Part I: Empirical models and experimental observation", IEEE Trans. Geosci. Remote Sensing, vol. GRS-23, pp.  25-34, Jan.  1985.
  32. M. C. Dobson, F. T. Ulaby, M. T. Hallikainen and M. A. El-Rayes, "Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models", IEEE Trans. Geosci. Remote Sensing, vol.  GRS-23, pp.  35-46, Jan.  1985.
  33. J. O. Curtis, C. A. Weiss Jr. and J. B. Everett, "Effect of soil composition on complex dielectric properties", U.S. Army Corps Eng. Res., U.S. Army Eng. Waterways Experiment Station, Vicksburg, MS, Dec. 1995 .
  34. D. A. Hill and J. R. Wait, "Calculated transmission loss for a leaky feeder communication system in a circular tunnel", Radio Sci., vol. 11, no.  4, pp.  315-321, 1976.
  35. J. R. Wait and D. A. Hill, "Impedance of an electric dipole located in a cylindrical cavity in a dissipative medium", Appl. Phys., vol. 11, pp.  351-356, 1976.
  36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Washington, DC: Nat. Bureau Standards, 1964.
  37. J. R. Wait and D. A. Hill, "Theory of transmission of electromagnetic waves along a drill rod in conducting rock", IEEE Trans. Geosci. Electron., vol.  GE-17, pp.  21-24, Apr.  1979.