2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Modeling Radio Wave Propagation in Tunnels with a Vectorial Parabolic Equation

Alexei V. Popov, Member, IEEE and Ning Yan Zhu Member, IEEE

Page 1403.

Abstract:

To study radio wave propagation in tunnels, we present a vectorial parabolic equation (PE) taking into account the cross-section shape, wall impedances, slowly varying curvature, and torsion of the tunnel axis. For rectangular cross section, two polarizations are decoupled and two families of adiabatic modes can be found explicitly, giving a generalization of the known results for a uniform tunnel. In the general case, a boundary value problem arises to be solved by using finite-difference/finite-element (FD/FE) techniques. Numerical examples demonstrate the computational efficiency of the proposed method.

References

  1. P. Delogne, "EM propagation in tunnels", IEEE Trans. Antennas Propagat., vol. 39, pp.  401-406, Mar.  1991.
  2. S. F. Mahmoud and J. R. Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels", Radio Sci., vol. 9, no.  12, pp.  1147-1158, 1974.
  3. S.-H. Chen and S.-K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic", IEEE Trans. Veh. Technol., vol. 45, pp.  570-578, Aug.  1996.
  4. J. S. Lamminmäki and J. J. A. Lempiäinen, "Radio propagation characteristics in curved tunnels", Inst. Elect. Eng. Proc. Microwave Antennas Propagat., vol. 145, pp.  327-331,  Aug.  1998.
  5. Y. Zhang, Y. Hwang and R. G. Kouyoumjian, "Ray-optical prediction of radio-wave propagation characteristics in tunnel environments-Part 2: Analysis and measurements", IEEE Trans. Antennas Propagat., vol. 46, pp.  1337-1345,  Sept.  1998.
  6. D. Didascalou, F. Küchen and W. Wiesbeck, "Ein neuartiges Normierungsverfahren für die strahlenoptische Wellenausbreitungsmodellierung in beliebig geformten Tunneln", Frequenz, vol. 53, no. 9/10, pp.  182-188, 1999.
  7. S. F. Mahmoud and J. R. Wait, "Guided electromagnetic waves in a curved rectangular mine tunnel", Radio Sci., vol. 9, no. 5, pp.  567-572, 1974.
  8. A. G. Emslie, R. L. Lagace and P. F. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels", IEEE Trans. Antennas Propagat., vol. AP-23, pp.  192-205,  Mar.  1975.
  9. Y. Yamaguchi, T. Abe, T. Sekiguchi and J. Chiba, "Attenuation constants of UHF radio waves in arched tunnels", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  714-718, Aug.  1985.
  10. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, Berlin: Germany: Springer-Verlag, 1990,vol. 6.
  11. Lord Rayleigh "The problem of the whispering gallery", The London, Edinburgh, Dublin Philosoph. Mag. J. Sci.-Ser. 6, vol. 20, no. 120, pp.  1001-1004, 1910 .
  12. V. A. Baranov and A. V. Popov, "Adiabatic modes of curved EM waveguides of arbitrary cross section", in Proc. 13th ACES, Monterey, CA, Mar. 1997, pp.  1036-1041. 
  13. V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Oxford: U.K.: Pergamon, 1965,vol. 1.
  14. G. D. Malyuzhinets, "Developments in our concepts of diffraction phenomena", Soviet Physics: Uspekhi, vol. 69(2), no. 5, pp.  749-758, 1959 .
  15. F. D. Tappert, "The parabolic approximation method,"in Wave Propagation and Underwater Acoustics, J. B. Keller, and J. S. Papadakis, Eds. New York: Springer-Verlag, 1977, ch. 5.
  16. V. M. Babič and V. S. Buldyrev, Short-Wavelength Diffraction Theory:Asymptotic Methods, Berlin: Germany: Springer-Verlag, 1991,vol. 4.
  17. A. A. Zaporozhets and M. F. Levy, "Radar cross-section calculation with marching methods", Electron. Lett., vol. 34, no. 20, pp.  1971-1972, 1998.
  18. A. A. Zaporozhets, "Application of vector parabolic equation method to urban radiowave propagation problems", Inst. Elect. Eng. Proc. Microwave Antennas Propagat., vol. 146, no. 4, pp.  253 -256, 1999.
  19. A. V. Popov, V. A. Vinogradov, N. Y. Zhu and F. M. Landstorfer, "3-D parabolic equation model of EM wave propagation in tunnels", Electron. Lett., vol. 35, no.  11, pp.  880-882, 1999.
  20. R. S. Meyerova, A. V. Popov and S. A. Hoziosky, "Low order modes transformation in smooth waveguide couplings", Radio Sci., vol. 22, no.  6, pp.  1009-1012, 1987.
  21. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: Inst. Elect. Eng., 1995,vol. 41.
  22. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics. Volume I: Fundamental and General Techniques, New York: Springer-Verlag, 1997.
  23. N. Y. Zhu, F. M. Landstorfer and G. Greving, "Three-dimensional terrain effects on high frequency electromagnetic wave propagation", in Proc. Eur. Microwave Conf., Stuttgart, Germany,Sept. 1991, pp.  1205-1210. 
  24. A. V. Popov, "Numerical solution of the wedge diffraction problem by the transverse diffusion method", Soviet Phys.: Acoust., vol. 15, no. 2, pp.  226-233, 1969.
  25. M. Abramowitz, and I. A. Stegun, Eds. "Handbook of Mathematical Functions", Dover, New York, 1972.
  26. Y. V. Kopylov, A. V. Popov and A. V. Vinogradov, "Application of the parabolic wave equation to X-ray diffraction optics", Opt. Commun., vol. 118, pp.  619-636,  1995.
  27. M. Born and E. Wolf, Principles of Optics, 6 (corrected) ed.   Cambridge: U.K.: Cambridge Univ. Press, 1997.
  28. O. C. Zienkiewicz, The Finite Element Method, 3 ed.   London: U.K.: McGraw-Hill, 1977.
  29. N. Y. Zhu and F. M. Landstorfer, "An efficient FEM formulation for rotationally symmetric coaxial waveguides", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  410-415, Feb.  1995.