2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Sommerfeld and Zenneck Wave Propagation for a Finitely Conducting One-Dimensional Rough Surface

Akira Ishimaru, Life Fellow, IEEE John Dexter Rockway, Yasuo Kuga, Senior Member, IEEE and Seung-Woo Lee

Page 1475.

Abstract:

Starting with Zenneck and Sommerfeld wave propagation over a flat finitely conducting surface has been extensively studied by Wait and many other authors. In this paper, we examine propagation over a finitely conducting rough surface, also studied by many people including Feinberg,Bass, Fuks, and Barrick. This paper extends the multiple scattering theories based on Dyson and Bethe-Salpeter equations and their smoothing approximations. The theory developed here applies to rough surfaces with small root-mean-square (rms) heights ( < 0.1) . We limit ourselves to the one-dimensional (1-D) rough surface with finite conductivity excited by a magnetic line source, which is equivalent to the Sommerfeld dipole problem in two dimensions (x -z plane). With the presence of finite roughness, the total field decomposes into the coherent field and the incoherent field. The coherent (average) field is obtained by using Dyson's equation, a fundamental integral equation based on the modified perturbation method. Once the coherent field has been obtained, we determine the Sommerfeld pole, the effective surface impedance, and the Zenneck wave for rough surfaces of small rms heights. The coherent field is written in terms of the Fourier transform, which is equivalent to the Sommerfeld integral. Numerical examples of the attenuation function are compared to Monte Carlo simulations and are shown to contrast the flat and rough surface cases. Next, we obtain the general expression for the incoherent mutual coherence functions and scattering cross section for rough conducting surfaces.

References

  1. J. R. Wait, "The ancient and modern history of EM ground-wave propagation", IEEE Antennas Propagat. Mag., vol. 40, pp.  7 -24, Oct.  1998.
  2. J. R. Wait, Waves in Stratified Media, New York: Pergamon, 1962.
  3. E. Feinberg, "On the propagation of radio waves along an imperfect surface", J. Phys., vol. 8, pp.  317-330, 1944.
  4. D. E. Barrick, "Theory of HF/VHF propagation across the rough sea-Part I: The effective surface impedance for a slightly rough highly conducting surface at grazing incident", Radio Sci., vol. 6, pp.  517-526, 
  5. D. E. Barrick, "Theory of HF/VHF propagation across the rough sea-Part II: Application to HF/VHF propagation above the sea", Radio Sci., vol. 6, pp.  527-533, 
  6. J. R. Wait, "Appendix C: On the theory of ground wave propagation over a slightly roughned curved earth,"in Electromagnetic Probing in Geophysics, Boulder, CO: Golem, 1971, pp.  37-381. 
  7. A. S. Brykhovetsky and I. M. Fuks, "The effective impedance tensor of a statistically uneven impedance surface", Izvestya VUZ'ov Radiophysika, vol. 28, no. 11, pp.  1400-1407, 1985.
  8. F. G. Bass and I. M. Fuks, Wave Scattering for Statistically Rough Surface, New York: Pergamon, 1979.
  9. A. S. Bryukhovetskii, V. M. Tigrov and I. M. Fuks, "Effective impedance tensor of statistically rough ideally conducting surface.", Radiophys. Quantum Electron., pp.  703-708, 1985.
  10. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, New York: Dover, 1967.
  11. S. M. Rytov, Yu. A. Kravtsov and V. I. Tatarskii, Principles of Statistical Radiophysics, New York: Springer-Verlag, 1987.
  12. J. G. Watson and J. B. Keller, "Refection, scattering and absorption of acoustic waves by rough surfaces", J. Acoust. Soc. Amer., vol. 74, pp.  1887-1894, 1983.
  13. J. G. Watson and J. B. Keller, "Rough surface scattering via the smoothing method", J. Acoust. Soc. Amer., vol. 75, pp.  1705-1708, 1984.
  14. S. Ito, "Analysis of scalar wave scattering from slightly rough random surfaces: A multiple scattering theory", Radio Sci., vol.  20, pp.  1-12, 1985.
  15. A. Ishimaru, J. D. Rockway and Y. Kuga, "Rough surface green's function based on the first order modified perturbation and smoothing diagram method", Waves Random Media, vol. 10, no. 1, pp.  17-31, 2000.
  16. "Special issue on low-grazing-angle backscattering from rough surfaces", IEEE Trans. Antennas Propagat., vol. 46, pp.  1-2, Jan.  1998.
  17. D. E. Barrick, "Grazing behavior of scatter and propagation above any rough surface", IEEE Tran. Antennas Propagat., vol. 46, pp.  73-83,  Jan.  1998.
  18. D. E. Barrick, "Near-grazing illumination and shadowing of rough surfaces", Radio Sci., vol. 30, pp.  563-580, 1995.
  19. I. M. Fuks, V. I. Tatarskii and D. E. Barrick, "Behavior of scattering from a rough surface at small grazing angles", Waves Random Media, vol. 9, pp.  295-305,  1999.
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media, Piscataway, NJ: IEEE, 1997.
  21. U. Frisch, "Wave propagation in random media,"in Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid, Ed. New York: Academic, 1968.
  22. A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering, Englewood Cliffs, NJ: Prentice-Hall, 1991.