2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Scattering of Electromagnetic Waves by aPerfectly Conducting Cylinder with aThin Lossy Magnetic Coating

Hans C. Strifors, Member, IEEE and Guillermo C. Gaunaurd Fellow, IEEE

Page 1528.

Abstract:

We study the scattering interaction of electromagnetic (EM) waves with an infinite cylinder coated with a lossy dielectric material with frequency-dependent material properties. These properties are hypothetical, yet representative of a wide class of available materials. The monostatic and bistatic scattered widths (SW) are evaluated for the TM or TE polarization cases. These calculations require the use of algorithms to evaluate Bessel-Hankel functions of complex arguments. These algorithms are based on a continued fraction approach,which ensures stability of the recursion relations. The bistatic plots of the TM and TE scattering widths for the coated body are displayed in a convenient color-graded scale. The reductions in the scattering widths produced by this type of coating are determined in selected frequency bands and angular sectors, in both polarization cases. It is quantitatively shown how curvature and polarization shift the effectiveness band of the coating. The determined regions in which the SW are minimally affected are the most suitable for target identification purposes.

References

  1. G. T. Ruck, D. E. Barrick, W. D. Stuart and C. K. Krichbaum, Radar Cross Section  Handbook, New York: Plenum, 1970,vol. 1, figs. 4-22.
  2. E. F. Knott, J. F. Shaeffer and M. T. Tuley, Radar Cross Section, 2nd ed.   Norwood, MA: Artech House, 1993.
  3. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing , New York: Cambridge Univ. Press, 1986.
  4. H. E. Bussey and J. H. Richmond, "Scattering by a lossy dielectric circular cylindrical multilayer: Numerical values", IEEE Trans. Antennas Propagat., vol. AP-23, pp.  723-725, Sept.  1975.
  5. G. T. Ruck, D. E. Barrick, W. D. Stuart and C. K. Krichbaum, Radar Cross Section  Handbook, New York: Plenum, 1970,vol. 1.
  6. X. Min, W. Sun, W. Gesang and K. M. Chen, "An efficient formulation to determine the scattering characteristics of a conducting body with thin magnetic coatings", IEEE Trans. Antennas Propagat., vol. 39, pp.  448-454, Apr.  1991.
  7. H. T. Kim and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings", IEEE Trans. Antennas Propagat., vol. 37, pp.  1463-1472, Nov.  1989.
  8. C. W. Helstrom, "Scattering from a cylinder coated with a thin dielectric material,"in Electromagnetic Theory and Antennas, E. C. Jordan, Ed. New York: MacMillan, 1963, pp.  133-144. 
  9. P. E. Hussar, "A uniform GTD treatment of surface diffraction by impedance and coated cylinders", IEEE Trans. Antennas Propagat., vol. 46, pp.  998-1008, July  1998.
  10. H. C. Strifors and G. C. Gaunaurd, "Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating", IEEE Trans. Antennas Propagat., vol. 46, pp.  1252-1262, Sept.  1998.
  11. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
  12. W. J. Lentz, "Generating Bessel functions in Mie scattering calculations using continued fractions", Appl. Opt., vol. 15, pp.  668-671,  Mar.  1976.
  13. W. J. Lentz, "Continuous fraction calculation of spherical Bessel functions", Comput. Phys., vol. 4, pp.  403 -407, July/Aug.  1990.
  14. M. Abramowitz, and I. A. Stegun, Eds., Handbook of Mathematical Functions, Washington, DC: U.S. Government Printing Office, 1972.
  15. M. Abramowitz, and I. A. Stegun, Eds., Handbook of Mathematical Functions, Washington, DC: U.S. Government Printing Office, 1972.
  16. M. Abramowitz, and I. A. Stegun, Eds., Handbook of Mathematical Functions, Washington, DC: U.S. Government Printing Office, 1972.
  17. E. Michielssen, J.-M. Sajer, S. Ranjithan and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1024-1031, June/July  1993.
  18. R. E. Hiatt, K. M. Siegel and H. Weil, "The ineffectiveness of absorbing coatings on conducting objects illuminated by long wavelength radar", Proc. IRE , vol. 48, pp.  1636-1642, 1960.
  19. G. C. Gaunaurd and H. C. Strifors, "Signal analysis by means of time-frequency (Wigner-type) distributions-Applications to sonar and radar echoes", Proc. IEEE, vol. 84, pp.  1231-1248, Sept.  1996.