2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Adaptive Transient Solution of Nonuniform Multiconductor Transmission LinesUsing Wavelets

S. Grivet-Talocia

Page 1563.

Abstract:

This paper presents a highly adaptive algorithm for the transient simulation of nonuniform interconnects loaded with arbitrary nonlinear and dynamic terminations. The discretization of the governing equations is obtained through a weak formulation using biorthogonal wavelet bases as trial and test functions. It is shown how the multiresolution properties of wavelets lead to very sparse approximations of the voltages and currents in typical transient analyzes. A simple yet effective time-space adaptive algorithm capable of selecting the minimal number of unknowns at each time iteration is described. Numerical results show the high degree of adaptivity of the proposed scheme.

References

  1. N. Balabanian and T. A. Bickart, Electrical Network Theory, New York: J. Wiley, 1969.
  2. C. E. Baum, J. B. Nitsch and R. J. Sturm, "Analytical solution for uniform and nonuniform multiconductor transmission lines with sources,"in The Review of Radio Science,1993-1996, New York: URSI-Oxford Univ. Press, 1996.
  3. P. Besnier and P. Degauque, "Electromagnetic topology: Investigations of nonuniform transmission line networks", IEEE Trans. Electromagn. Compat., vol. 37, pp.  227-233, May  1995.
  4. C. R. Burrows, "The exponential transmission line", Bell System Tech. J., vol. 17, pp.  555-573, 1938.
  5. F. Chang, "Transient simulation of nonuniform coupled lossy transmission lines characterized with frequency-dependent parameters-Part I: Waveform relaxation analysis", IEEE Trans. Circuits Syst. I, vol. 39, pp.  585-603, Aug.  1992.
  6. A. Cohen, I. Daubechies and J. Feauveau, "Biorthogonal bases of compactly supported wavelets", Comm. Pure Appl. Math., vol. 45, pp.  485-560, 1992.
  7. W. Dahmen and C. Micchelli, "Using the refinement equation for evaluating integrals of wavelets", SIAM J. Num. Anal., vol. 30, pp.  507-537, 1993.
  8. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  9. R. A. DeVore, B. Jawerth and V. A. Popov, "Compression of wavelet decompositions", Amer. J. Math., vol. 114, pp.  737-785, 1992.
  10. T. Dhaene, L. Martens and D. De Zutter, "Transient simulation of arbitrary nonuniform interconnection structures characterized by scattering parameters", IEEE Trans. Circuits Syst. I, vol. 39, pp.  928-937, Nov.  1992 .
  11. S. Grivet-Talocia and F. Canavero, "Wavelet-based adaptive simulation of nonuniform interconnects with arbitrary loads", in Proc. IEEE Int. Symp. Electromagn. Compat., Seattle, WA, Aug. 1999, pp.  450-455. 
  12. S. Grivet-Talocia and F. Canavero, "Accuracy of propagation modeling on transmission lines", in Proc. IEEE Int. Symp. Electromagn. Compat., Seattle, WA, Aug. 1999, pp.  474- 479. 
  13. S. Grivet-Talocia and F. Canavero, "Weak solution of the nonuniform multiconductor transmission lines", in Proc. IEEE Int. Symp. Electromagn. Compat. , Denver, CO, Aug. 1998, pp.  964-968. 
  14. S. Grivet-Talocia and F. Canavero, "Wavelet-based adaptive solution for the nonuniform multiconductor transmission lines", IEEE Microwave Guided Wave Lett., vol. 8, pp.  287-289, Aug.  1998.
  15. S. Grivet-Talocia and A. Tabacco, "Wavelets on the interval with optimal localization", Math. Methods Models Appl. Sci., vol. 10, pp.  441-462,  2000.
  16. S. Grivet-Talocia and F. Canavero, "Weak boundary treatment for high order transient analysis of MTL's", in Proc. IEEE Int. Symp. Electromagn. Compat. , Washington, DC, Aug. 2000.
  17. B. Gustafsson, H. O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, New York: Wiley, 1995.
  18. "Special issue on wavelets in electromagnetics", Int. J. Num. Modeling, vol. 11, pp.  1-96, 1998.
  19. M. Krumpholz and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  555-571, Apr.  1996.
  20. M. Krumpholz, H. G. Winful and L. P. B. Katehi, "Nonlinear time-domain modeling by multiresolution time domain (MRTD)", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  385-393, Mar.  1997.
  21. O. A. Palusinski, "Analysis of transients in nonuniform and uniform multiconductor transmission lines", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  127-138, Jan.  1989.
  22. C. R. Paul, Analysis of Multiconductor Transmission Lines, New York: Wiley, 1994.
  23. R. Robertson, E. Tentzeris, M. Krumpholz and L. P. B. Katehi, "Modeling of dielectric cavity structures using multiresolution time-domain analysis", Int. J. Num. Modeling, vol. 11, pp.  55-68, 1998.
  24. B. Strand, "Numerical studies of hyperbolic IBVP with high-order difference operators satisfying a summation by parts rule", Appl. Numer. Math., vol. 26, pp.  497-521, 1998.
  25. E. Tentzeris, R. Robertson, J. F. Harvey and L. P. B. Katehi, "Stability and dispersion analysis of Battle-Lemarie based MRTD schemes", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1004-1013, July  1999.
  26. V. K. Tripathi and N. Orhanovic, "Time-domain characterization and analysis of dispersive dissipative interconnects", IEEE Trans. Circuits Syst. I, vol. 39, pp.  938-945, Nov.  1992.
  27. J. R. Wait, Electromagnetic Wave Theory, New York: Harper Row, 1985.
  28. J. R. Wait, Electromagnetic Waves in Stratified Media, New York: Pergamon Press, 1962.