2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Scattering from Dielectric-Coated Impedance Elliptic Cylinder

Abdel-Razik Sebak Senior Member, IEEE

Page 1574.

Abstract:

The scattering properties of an impedance elliptic cylinder coated with a homogeneous material are investigated analytically. The method of separation of variables together with the impedance boundary condition (IBC) are used to determine the field distributions in each region for both the TM and TE excitations. The technique can be easily extended to handle any number of layers. The behavior of the scattered field in the far zone is illustrated with numerical results for different core and coating material types, axial ratio, and electrical sizes.

References

  1. J. R. Wait, "Scattering of a plane wave from a circular dielectric cylinder at oblique incidence", Can. J. Phys., vol. 33, p.  189, 1955.
  2. N. Wang, "Electromagnetic scattering from a dielectric-coated circular cylinder", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  960-963,  Sept.  1985.
  3. C. Yeh, "Backscattering cross section of a dielectric elliptical cylinder", J. Opt. Soc. Amer., vol. 55, pp.  309-314, 1965.
  4. H. Ragheb and L. Shafai, "Electromagnetic scattering from a dielectric-coated elliptic cylinder", Can. J. Phys., vol. 66, pp.  1115 -1122, 1988.
  5. M. A. Leontovich, "On the approximate boundary conditions,"in Investigation of Propagation Radiowaves, B. A. Vredensky, Ed. Moscow: USSR: USSR Acad. Sci., 1948, pp.  5-20. 
  6. P. L. E. Uslenghi, "High frequency scattering from a coated cylinder", Can. J. Phys., vol. 42, pp.  2121 -2128, 1964.
  7. N. G. Alexopoules and G. A. Tadler, "Electromagnetic scattering from an elliptic cylinder loaded with continuous and discontinuous surface impedances", J. Appl. Phys., vol. 46, pp.  1128-1134, 1975.
  8. J. R. Wait and C. M. Jackson, "Calculations of the bistatic scattering cross section of a sphere with an impedance boundary condition", J. Res. NBS, vol. 69D, pp.  299-315, 1965.
  9. A. Sebak and L. Shafai, "Electromagnetic scattering by spheroidal objects with impedance boundary conditions at axial incident", Radio Sci., vol. 23, pp.  1048-1060, 1988.
  10. N. G. Alexopoules and G. A. Tadler, "Accuracy of the Leontovich boundary condition for continuous and discontinuous surface impedance", J. Appl. Phys., vol. 46, pp.  3326-3332, 1975.
  11. H. H. Syed and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions", Radio Sci., vol. 26, pp.  1305-1314, 1991.
  12. R. P. Parrikar, A. A. Kishk and A. Z. Elsherbeni, "Scattering from an impedance cylinder embedded in a nonconcentric dielectric cylinder", Proc. Inst. Elect. Eng., vol. 138, pp.  169-175, 1991.
  13. J. R. Wait and A. M. Conda, "Pattern of an antenna on a curved lossy surface", IEEE Trans. Antennas Propagat., vol. AP-6, pp.  348-359, Oct.  1958.
  14. P. L. Huddleston and D.-S. Wang, "An impedance boundary condition approach to radiation by uniformly coated antennas", Radio Sci., vol. 24, pp.  427-432,  1989.
  15. D. Hill and J. R. Wait, "Ground wave attenuation function for a spherical earth with arbitrary surface impedance", Radio Sci., vol. 15, pp.  637-643,  1980.
  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, New York: McGraw-Hill, 1953,vol. I and II.