2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Integral Equation Solution of Maxwell's Equations from Zero Frequency to Microwave Frequencies

Jun-Sheng Zhao, Member, IEEE and Weng Cho Chew Fellow, IEEE

Page 1635.

Abstract:

We develop a new method to precondition the matrix equation resulting from applying the method of moments (MoM) to the electric field integral equation (EFIE). This preconditioning method is based on first applying the loop-tree or loop-star decomposition of the currents to arrive at a Helmholtz decomposition of the unknown currents. However, the MoM matrix thus obtained still cannot be solved efficiently by iterative solvers due to the large number of iterations required. We propose a permutation of the loop-tree or loop-star currents by a connection matrix, to arrive at a current basis that yields a MoM matrix that can be solved efficiently by iterative solvers. Consequently, dramatic reduction in iteration count has been observed. The various steps can be regarded as a rearrangement of the basis functions to arrive at the MoM matrix. Therefore,they are related to the original MoM matrix by matrix transformation, where the transformation requires the inverse of the connection matrix. We have also developed a fast method to invert the connection matrix so that the complexity of the preconditioning procedure is of O(N) and, hence, can be used in fast solvers such as the low-frequency multilevel fast multipole algorithm (LF-MLFMA). This procedure also makes viable the use of fast solvers such as MLFMA to seek the iterative solutions of Maxwell's equations from zero frequency to microwave frequencies.

References

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford: U.K.: Clarendon, 1873.
  2. G. Mie, "Beiträge zur optik trüber medien speziel kolloidaler metallösungen", Ann. Phys. (Leipzig), vol. 25, p.  377, 1908.
  3. P. Debye, The Collected Papers of Peter J. W. Debye, New York: Intersci., 1954.
  4. A. Sommerfeld, Partial Differential Equation, New York: Academic, 1949.
  5. N. Marcuvitz, "Field representations in spherically stratified regions", Commun. Pure Appl. Math., vol. 4, pp.  263-315, 1951.
  6. J. R. Wait, "Scattering of plane wave from a circular dielectric cylinder at oblique incidence", Can. J. Phys., vol. 33, no.  5, pp.  189-195, 1955.
  7. J. R. Wait, "Radiation from a vertical antenna over a curved stratified ground", J. Res. NBS, vol. 56, p.  237, 1956.
  8. J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Amsterdam: The Netherlands: North-Holland, 1969.
  9. M. Born and E. Wolf, Principles of Optics, New York: Pergamon, 1970.
  10. J. B. Keller, "Diffraction by a convex cylinder", IRE Trans. Antennas Propagat., vol. AP-4, pp.  312-321, July  1956.
  11. S. W. Lee and G. A. Deschamps, "A uniform aymptotic theory of EM diffraction by a curved wedge", IEEE Trans. Antennas Propagat., vol. AP-24, pp.  25-34,  Jan.  1976.
  12. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Electromagnetic Waves, Englewood Cliffs, NJ: Prentice-Hall, 1973.
  13. P. H. Pathak, "An asymptotic analysis of the scattering of plane waves by a smooth convex cylinder", Radio Sci., vol. 14, p.  419, 1979.
  14. R. G. Kouyoumjian, "The geometrical theory of diffraction and its applications,"in Numerical and Asymptotic Techniques in Electromagnetics , R. Mittra, Ed. New York: Springer-Verlag, 1975.
  15. H. Bremmer, "The WKB approximation as the first term of a geometric-optical series", Commun. Pure Appl. Math., vol. 4, p.  105, 1951.
  16. V. A. Fock, Electromagnetic Diffraction and Propagation Problems, New York: Pergamon, 1965.
  17. D. S. Jones and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase", J. Math. Phys., vol. 37, pp.  1-28, 1958 .
  18. W. C. Chew, Waves and Fields in Inhomogeneous Media, New York: Van Nostrand Reinhold, 1990.
  19. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. 14, pp.  302-307, May  1966.
  20. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge: U.K.: Cambridge Univ. Press, 1983.
  21. R. F. Harrington, Field Computation by Moment Method, Malabar, FL: Krieger, 1983.
  22. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp.  407-418,  May  1982.
  23. J. M. Song, C. C. Lu, W. C. Chew and S. W. Lee, "Fast Illinois solver code (FISC) solves problems of unprecedented size at the Center for Computational Electromagnetics, University of Illinois", IEEE Antennas Propagat. Mag., vol. 40, pp.  27-34, June  1998.
  24. A. F. Peterson, "The `interior resonance' problem associated with surface integral equations of electromagnetics: Numerical consequences and a survey of remedies", Electromagn., no. 10, pp.  293 -312, 1990.
  25. J. C. Bolomey and W. Tabbara, "Numerical aspects on coupling between complementary boundary value problems", IEEE Trans. Antennas Propagat., vol. AP-21, pp.  356-363,  May  1973.
  26. J. R. Mautz and R. F. Harrington, "H-field, E-field and combined field solutions for conducting bodies of revolution", AEÜ, vol. 32, no. 4, pp.  159-164, Apr.  1978.
  27. H. A. Schenck, "Improved integral formulation for acoustic radiation problems", J. Acoust. Soc. Amer., vol. 44, pp.  41-48, July  1968.
  28. P. C. Waterman, "Numerical solution of electromagnetic scattering problems,"in Computer Techniques for Electromagnetics, R. Mittra, Ed. New York: Hemisphere, 1987.
  29. R. Mittra and C. A. Klein, "Stability and convergence of moment method solution,"in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed. New York: Springer-Verlag, 1975.
  30. J. R. Mautz and R. F. Harrington, "A combined-source formulation for radiation and scattering from a perfectly conducting body", IEEE Trans. Antennas Propagat., vol. AP-27, pp.  445-454, July  1979.
  31. A. R. Tobin, A. D. Yaghjian and M. M. Bell, "Surface integral equations for multi-wavelength arbitrary shaped, perfectly conducting bodies", in Proc. Dig. 19th URSI Radio Sci. Meet. , Boulder, CO, Jan. 1987, p.  7. 
  32. L. Greengard and V. Rokhlin, "A fast algorithm for particle simulation", J. Computat. Phys., vol. 73, pp.  325-348, 1987.
  33. K. Nabor, S. Kim and J. White, "Fast capacitance extraction of general three-dimensional structures", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1496-1506, July  1992.
  34. V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions", J. Comput. Phys., vol. 36, no. 2, pp.  414-439, 1990.
  35. W. C. Chew, J. M. Jin, C. C. Lu, E. Michielssen and J. M. Song, "Fast solution methods in electromagnetics", IEEE Trans. Antennas Propagat., vol. 45, pp.  533-543, Mar.  1997.
  36. J. R. Wait, Geoelectromagnetism, New York: Academic, 1982.
  37. D. R. Wilton and A. W. Glisson, "On improving the electric field integral equation at low frequencies", in Proc. URSI Radio Sci. Meet. Dig., Los Angeles, CA, June 1981, p.  24. 
  38. J. R. Mautz and R. F. Harrington, "An E-field solution for a conducting surface small or comparable to the wavelength", IEEE Trans. Antennas Propagat., vol. 32, pp.  330-339, Apr.  1984.
  39. J. S. Lim, S. M. Rao and D. R. Wilton, "A novel technique to calculate the electromagnetic scattering by surfaces of arbitrary shape", in Proc. URSI Radio Sci. Meet. Dig., Ann Arbor, MI, June 1993, p.  322. 
  40. W. Wu, A. W. Glisson and D. Kajfez, "A comparison of two low-frequency formulations for the electric field integral equation", in Proc. 10th Annu. Rev. Progress Appl. Computat. Electromagn., vol. 2, Monterey, CA, Mar. 1994, pp.  484-491. 
  41. W. Wu, A. W. Glisson and D. Kajfez, "Electromagnetic scattering by resonant low-frequency structures", in Proc. URSI Radio Sci. Meet. Dig., Seattle, WA, June 1994, p.  137. 
  42. E. Arvas, R. F. Harrington and J. R. Mautz, "Radiation and scattering from electrically small conducting bodies of arbitrary shape", IEEE Trans. Antennas Propagat., vol.  34, pp.  66-77, Jan.  1986.
  43. M. Burton and S. Kashyap, "A study of a recent, moment-method algorithm that is accurate to very low frequencies", Appl. Computat. Electromagn. Soc. J. , vol. 10, no. 3, pp.  58-68, Nov.  1995.
  44. W. Wu, A. W. Glisson and D. Kajfez, "A study of two numerical solution procedures for the electric field integral equation at low frequency", Appl. Computat. Electromagn. Soc. J., vol. 10, no. 3, pp.  69-80, Nov.   1995.
  45. J. S. Zhao and W. C. Chew, "Three dimensional multilevel fast multipole algorithm from static to electrodynamic", Microwave Opt. Tech. Lett., vol. 26, no. 1, pp.  43-48, July  2000.
  46. S. M. Rao, "Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modeling", Ph.D. dissertation, Univ. Mississippi, Oxford, MS, 1980 .
  47. M. F. Costa and R. F. Harrington, "Electromagnetic radiation and scattering from a system of conducting bodies interconnected by wires", Syracuse Univ., Syracuse, NY, 1983.
  48. M. F. Costa and R. F. Harrington, "Minimization of the radiation from computer systems", in Proc. Inst. Elect. Eng. Conf. Expo., Toronto, Canada,Sept. 1983,paper 83 261,. pp.  660-665. 
  49. F. Yuan, "Analysis of power/ground noise and decoupling capacitors in printed circuit board systems", in Proc. IEEE Electromagn. Compat. Symp. , Austin, TX, Aug. 1997, pp.  425-430. 
  50. C. Lanczos, Applied Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1956, pp.  141-143 . 
  51. H. Y. Chao, W. C. Chew, J. M. Song and E. Michielssen, "Impedance calculation of complex surfaces-wire structures with the multilevel fast multipole algorithm and a variational formulation", in IEEE Antennas Propagat. Soc. Int. Symp., Orlando, FL, July 1999.
  52. J. C. Maxwell, A Treatise on Electricity and Magnetism, New York: Dover, 1954.
  53. W. C. Chew, Waves and Fields in Inhomogeneous Media, New York: IEEE Press, 1995.