2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000
Table of Contents for this issue
Complete paper in PDF format
Impedance Boundary Conditions
in Ultrasonics
John D. Shumpert, Student Member, IEEE and Thomas B. A. Senior Fellow, IEEE
Page 1653.
Abstract:
A generalized impedance boundary condition (GIBC) is developed
to approximate the scattering of a plane acoustic wave from a bone structure
such as a rib. In particular, the rib and surrounding tissue are modeled as
a viscoelastic cylinder of infinite length immersed in an infinite, inviscid
fluid medium. In order to determine the scattered pressure wave, appropriate
boundary conditions are imposed on the relevant differential equations at
the fluid-solid surface. The exact solution is then used to develop first-and second-order impedance boundary conditions applicable at the surface of
the cylinder. Numerical results demonstrate the improved accuracy of the second
order condition.
References
-
M. A. Leontovich, Investigations on Radiowave Propagation-Part II, Moscow: USSR: Academy of Sciences, 1948.
-
J. R. Wait, "The scope of impedance boundary conditions in radio propagation", IEEE Trans. Geosci. Remote Sensing, vol. GRS-28, pp. 721-723, July 1990.
-
T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: IEE Press, 1995.
-
G. E. Goldman and T. F. Heuter, "Tabular data of the velocity of high-frequency sound in mammalian tissue", J. Acoust. Soc. Amer., vol. 28, pp.
35-37, 1956.
-
P. N. T. Wells, Biomedical Ultrasonics,
London: U.K.: Academic, 1977.
-
R. C. Chivers, "Ultrasonic velocity and attenuation in mammalian tissues", J. Acoust. Soc. Amer., vol. 63, pp. 940-953, 1978.
-
J. P. Jones, "Quantitative characterization of tissue using ultrasound", IEEE Trans. Nuclear Sci., vol. NS-27, pp. 940-953, 1980.
-
J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple
Shapes, London: Harper Row, 1987.
-
J. J. Faran, "Sound scattering by solid cylinders and spheres", J. Acoust. Soc. Amer., vol. 23, no. 4, pp. 405-418, July
1951.
-
R. H. Vogt, L. Flax, L. R. Dragonette and W. G. Neubauer, "Monostatic reflection of a plane wave from an absorbing sphere", J. Acoust. Soc. Amer., vol. 57, no. 3, pp. 558-561, Mar. 1975.
-
R. H. Vogt, L. Flax, L. R. Dragonette and W. G. Neubauer, "Erratum: Monostatic reflection of a plane wave from an absorbing sphere", J. Acoust. Soc. Amer., vol. 62, no. 5, p. 1315, Nov. 1977.
-
L. Flax and W. G. Neubauer, "Acoustic reflection from layered elastic absorptive cylinders", J. Acoust. Soc. Amer., vol. 61, no. 2, pp.
307-312, Feb. 1977.
-
J. George and H. Überall, "Approximate methods to describe the reflections from cylinders and spheres with complex impedance", J. Acoust. Soc. Amer., vol. 65, no. 1, pp. 15-24, Jan. 1979.
-
V. M. Ayres and G. C. Gaunaurd, "Acoustic resonance scattering by viscoelastic objects", J. Acoust. Soc. Amer., vol. 81, no. 2, pp. 301-311, Feb.
1987.
-
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed. New York: Dover, 1944.
-
P. M. Morse and H. Feshbach,
Methods of Theoretical Physics,
London: McGraw-Hill, 1953.
-
T. B. A. Senior, "Generalized boundary conditions for scalar fields", J. Acoust. Soc. Amer., vol. 97, no. 6, pp.
3473-3477, June 1995.
-
J. D. Shumpert, "Acoustic scattering from elastic circular cylinders", Univ. Michigan, Radiation Lab
Rep. RL-969, June 1996.