2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Impedance Boundary Conditions in Ultrasonics

John D. Shumpert, Student Member, IEEE and Thomas B. A. Senior Fellow, IEEE

Page 1653.

Abstract:

A generalized impedance boundary condition (GIBC) is developed to approximate the scattering of a plane acoustic wave from a bone structure such as a rib. In particular, the rib and surrounding tissue are modeled as a viscoelastic cylinder of infinite length immersed in an infinite, inviscid fluid medium. In order to determine the scattered pressure wave, appropriate boundary conditions are imposed on the relevant differential equations at the fluid-solid surface. The exact solution is then used to develop first-and second-order impedance boundary conditions applicable at the surface of the cylinder. Numerical results demonstrate the improved accuracy of the second order condition.

References

  1. M. A. Leontovich, Investigations on Radiowave Propagation-Part II, Moscow: USSR: Academy of Sciences, 1948.
  2. J. R. Wait, "The scope of impedance boundary conditions in radio propagation", IEEE Trans. Geosci. Remote Sensing, vol. GRS-28, pp.  721-723, July  1990.
  3. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: IEE Press, 1995.
  4. G. E. Goldman and T. F. Heuter, "Tabular data of the velocity of high-frequency sound in mammalian tissue", J. Acoust. Soc. Amer., vol. 28, pp.  35-37, 1956.
  5. P. N. T. Wells, Biomedical Ultrasonics, London: U.K.: Academic, 1977.
  6. R. C. Chivers, "Ultrasonic velocity and attenuation in mammalian tissues", J. Acoust. Soc. Amer., vol. 63, pp.  940-953, 1978.
  7. J. P. Jones, "Quantitative characterization of tissue using ultrasound", IEEE Trans. Nuclear Sci., vol. NS-27, pp.  940-953, 1980.
  8. J. J. Bowman, T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, London: Harper Row, 1987.
  9. J. J. Faran, "Sound scattering by solid cylinders and spheres", J. Acoust. Soc. Amer., vol. 23, no. 4, pp.  405-418, July  1951.
  10. R. H. Vogt, L. Flax, L. R. Dragonette and W. G. Neubauer, "Monostatic reflection of a plane wave from an absorbing sphere", J. Acoust. Soc. Amer., vol. 57, no. 3, pp.  558-561, Mar.  1975.
  11. R. H. Vogt, L. Flax, L. R. Dragonette and W. G. Neubauer, "Erratum: Monostatic reflection of a plane wave from an absorbing sphere", J. Acoust. Soc. Amer., vol. 62, no. 5, p.  1315, Nov.  1977.
  12. L. Flax and W. G. Neubauer, "Acoustic reflection from layered elastic absorptive cylinders", J. Acoust. Soc. Amer., vol. 61, no. 2, pp.  307-312, Feb.  1977.
  13. J. George and H. Überall, "Approximate methods to describe the reflections from cylinders and spheres with complex impedance", J. Acoust. Soc. Amer., vol. 65, no. 1, pp.  15-24, Jan.  1979.
  14. V. M. Ayres and G. C. Gaunaurd, "Acoustic resonance scattering by viscoelastic objects", J. Acoust. Soc. Amer., vol. 81, no. 2, pp.  301-311, Feb.  1987.
  15. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed.   New York: Dover, 1944.
  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, London: McGraw-Hill, 1953.
  17. T. B. A. Senior, "Generalized boundary conditions for scalar fields", J. Acoust. Soc. Amer., vol. 97, no. 6, pp.  3473-3477, June  1995.
  18. J. D. Shumpert, "Acoustic scattering from elastic circular cylinders", Univ. Michigan, Radiation Lab Rep. RL-969, June 1996.