2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Impedance-Type Boundary Conditions for a Periodic Interface Between a Dielectric and a Highly Conducting Medium

Christopher L. Holloway, Member, IEEE and Edward F. Kuester

Page 1660.

Abstract:

Using the homogenization method, we derive a generalized impedance-type equivalent boundary condition for the electromagnetic (EM) field at a two-dimensional (2-D) periodic highly conducting rough surface with small-scale roughness. The results obtained in this paper generalize ones obtained previously for the case of a perfectly conducting rough surface. We will show that the coefficients in this equivalent boundary condition can be interpreted in terms of electric and magnetic polarizability densities. We also show that when the roughness dimensions are small compared to a skin depth of the conducting region (a smooth interface), the generalized impedance boundary condition given here reduces to the standard Leontovich condition. Results for the reflection coefficient of a plane wave incident onto a 2-D conducting interface are presented. We show the importance of the boundary-layer fields (as used in this study) over that of classical methods when calculating the reflection coefficient from a highly conducting rough interface. This work will lead to an analysis of the effects of surface roughness on power loss in MIMIC circuits.

References

  1. C. L. Holloway and E. F. Kuester, "Equivalent boundary conditions for a perfectly conducting periodic surface with a cover layer", Radio Sci. , vol. 35, no. 3, pp.  661-681, May-June  2000.
  2. J. R. Wait, "Perturbation analysis for reflection from two-dimensional periodic sea waves", Radio Sci., vol. 6, pp.  387-391, 1971.
  3. D. E. Barrick, "Theory of HF and VHF propagation across the rough sea, 1, the effective surface impedance for a slightly rough highly conducting medium at grazing incidence", Radio Sci., vol. 6, pp.  517-526,  1971.
  4. R. K. Rosich and J. R. Wait, "A general perturbation solution for reflection from two-dimensional periodic surfaces", Radio Sci., vol. 12, pp.  719-729,  1977.
  5. S. P. Morgan, "Effect of surface roughness on eddy current losses at microwave frequencies", J. Appl. Phys., vol. 20, pp.  352-362,  1949.
  6. E. A. Marcatili, "Heat loss in grooved metallic surface", Proc. IRE, vol. 45, pp.  1134-1139, 1957.
  7. A. E. Sanderson, "Effect of surface roughness on propagation of the TEM mode,"in Advances in Microwaves, L. Young, Ed. New York: Academic, 1971,vol. 7, pp.  1-57. 
  8. I. V. Baryshnikov, V. A. Datskovskiy and A. V. Upolovnev, "Effect of the surface roughness of a waveguiding system on the HF losses", Radiotekh. Elektron., vol. 33, pp.  2029-2034, 1988.
  9. A. S. Il'inskii (Ilyinsky), G. Ya. Slepyan and A. Ya. Slepyan, Propagation, Scattering and Dissipation of Electromagnetic Waves, London: U.K.: Peter Peregrinus, 1993.
  10. M. A. Biot, "Some new aspects of the reflection of electromagnetic waves on a rough surface", J. Appl. Phys., vol.  28, pp.  1455-1463, 1957.
  11. J. R. Wait, "Guiding of electromagnetic waves by uniformly rough surfaces, part I", IRE Trans. Antennas Propagat., vol. 7, pp.  S154-S162,  1959.
  12. F. F. Mende, A. I. Spitsyn and V. N. Podlesnyi, "Effect of roughness on surface impedance and effective penetration depth in superconductors", Zh. Tekh. Fiz., vol. 51, pp.  2560-2564, 1981.
  13. F. F. Mende, A. I. Spitsyn, N. A. Kochkonyan and A. V. Skugarevski, "Surface impedance of real superconducting surfaces", Croygenics, vol. 25, pp.  10-12, Jan.  1985.
  14. Z. Wu and L. E. Davis, "Surface roughness effect on surface impedance of superconductors", J. Appl. Phys., vol. 76, pp.  3669-3672, 1994.
  15. F. F. Mende and A. I. Spitsyn, Poverkhnostnyi Impedans Sverkhprovodnikov, Kiev: Naukova Dumka, 1985, ch. 3.
  16. D. L. Jaggard, "On fractal electrodynamics,"in Recent Advances in Electromagnetic Theory, H. N. Kritikos, and D. L. Jaggard, Ed. Berlin: Germany: Springer-Verlag, 1990, ch. 6, pp.  183-224. 
  17. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Berlin: Germany: Springer-Verlag, 1980, pp.  68-77. 
  18. M. Codegone, "On the acoustic impedance condition for ondulated boundary", Ann. Inst. Henri Poincaré Sect. A: Phys. Théor. , vol. 36, pp.  1-18, 1982.
  19. A. G. Belyaev (Belyayev), A. G. Mikheev (Mikheyev) and A. S. Shamaev (Shamayev), "Diffraction of a plane wave by a rapidly oscillating surface", Zh. Vychisl. Mat. Mat. Fiz., vol. 32, pp.  1258-1272, 1992.
  20. M. A. Leontovich, "Approximate boundary conditions for electromagnetic fields at the surface of a highly conducting body,"in Issledovaniya po Rasprostraneniyu Radiovoln, Moscow: 1948, pp.  5-12. 
  21. L. M. Brekhovskikh, Waves in Layered Media, New York: Academic, 1960.
  22. J.-L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, N.Y.: Science Press, 1981.
  23. G. P. Panasenko, "Averaging of processes in highly heterogeneous structures", Dokl. Akad. Nauk USSR, vol. 298, pp.  76-79, 1988.
  24. C. L. Holloway, "Edge and Surface Shape Effects on Conductor Loss Associated with Planar Circuits", Dept. Elec. Comp. Eng., Univ. Colorado,Boulder, MIMICAD Tech. Rep. 12, 1992.
  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Oxford: U.K.: Pergamon, 1984.
  26. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: Inst. Elect. Eng., 1995.
  27. C. L. Holloway and E. F. Kuester, "Power loss associated with conducting and superconducting rough interfaces", IEEE Trans. Microwave Theory Tech, vol. 48, pp.  1601-1610, Oct.  2000.
  28. C. L. Holloway and E. F. Kuester, "A variational formulation for a general class of eddy current problem", IEEE Trans. Antennas Propagat., to be published.
  29. E. F. Kuester and C. L. Holloway, "A low-frequency model for wedge or pyramid absorber array-I: Theory", IEEE Trans. Electromagn. Compat., vol. 36, pp.  300-306, 1994.
  30. S. M. Rytov, "Electromagnetic properties of a finely stratified medium", Sov. Phys. JETP, vol. 2, no. 3, pp.  466-475, 1956.
  31. C. L. Holloway, P. McKenna and R. DeLyser, "A numerical investigation on the accuracy of the use of homogenization for analyzing periodic absorbing arrays", in Proc. Int. Symp. Electromagn. Theory-URSI, St. Petersburg, Russia,May 1995, pp.  163-165. 
  32. B. S. Thornton, "Limit of the Moth's eye principle and other impedance-matching corrugations for solar-absorber design", J. Opt. Soc. Amer., vol. 65, pp.  267-270, 1975.
  33. T. K. Gaylord, E. N. Glytsis and M. G. Moharam, "Zero-reflectivity homogeneous layers and high spatial frequency surface-relief gratings on lossy materials", Appl. Opt., vol. 26, pp.  3123-3134, 1987.