2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Transient Excitation of a Layered Dielectric Medium by a Pulsed Electric Dipole

Anton G. Tijhuis, Member, IEEE and Amelia Rubio Bretones Senior Member, IEEE

Page 1673.

Abstract:

In this paper, we consider the transient excitation by a pulsed vertical or horizontal dipole of a continuously layered lossy dielectric slab embedded in between two dielectric half-spaces. The focus of the paper is on finding a highly efficient numerical implementation. To this end, we choose all spatial approximations independent of frequency. In the first place, this concerns the inverse spatial Fourier transformation in the Sommerfeld representation of the fields. A suitable quadrature rule is obtained by introducing a normalized wave number, and identifying the result in terms of dual analytic signals. In the second place, this concerns the spectral fields for which a new integral equation is derived with a degenerate kernel. This integral equation is solved by a fully recursive procedure. Representative results are presented and discussed that can be underdstood from physical intuition.

References

  1. J. R. Wait, Electromagnetic Waves in Stratified Media, New York: IEEE Press, 1996.
  2. J. R. Wait and D. A. Hill, "Fields of a horizontal loop of arbitrary shape buried in a two-layer earth", Radio Sci., vol. 15, pp.  903-912,  1980.
  3. A. Rubio Bretones and A. G. Tijhuis, "Transient excitation of a straight thin wire segment over an interface between two dielectric half spaces", Radio Sci., vol. 30, pp.  1723-1738, 1995.
  4. A. Rubio Bretones and A. G. Tijhuis, "Transient excitation of two coupled wires over an interface between two dielectric half spaces", Radio Sci. , vol. 32, pp.  25-41, 1997.
  5. E. S. A. M. Lepelaars, "Transient electromagnetic excitation of biological media by circular loop antennas", Ph.D. dissertation, Eindhoven Univ. Technology, The Netherlands, 1997.
  6. A. J. Devaney and G. C. Sherman, "Plane-wave representations for scalar wave fields", SIAM Rev., vol. 15, pp.  765-786, 1973.
  7. R. W. P. King and S. S. Sandler, "The electromagnetic field of a vertical electric dipole in the presence of a three-layered region", Radio Sci. , vol. 29, pp.  97-113, 1994.
  8. S. L. Dvorak, "Application of the fast Fourier transform to the computation of the Sommerfeld integral for a vertical electric dipole above a half-space", IEEE Trans. Antennas Propagat., vol. 40, pp.  798-805,  July  1992.
  9. S. L. Dvorak and M. M. Mechaik, "Application of the contour transformation method to a vertical dipole over earth", Radio Sci., vol. 28, pp.  309-317,  1993.
  10. A. G. Tijhuis, R. Wiemans and E. F. Kuester, "A hybrid method for solving time-domain integral equations in transient scattering", J. Electromagn. Waves Applicat., vol. 3, pp.  485-511, 1989.
  11. A. G. Tijhuis and Z. Q. Peng, "Marching-on-in-frequency method for solving integral equations in transient electromagnetic scattering", Proc. Inst. Elect. Eng., pp.  347-355, 1991.
  12. A. T. de Hoop, "A modification of Cagniard's method for solving seismic pulse problems", Appl. Sci. Res., vol. B8, pp.  349-356, 1960.
  13. A. T. de Hoop and H. J. Frankena, "Radiation of pulses generated by a vertical electric dipole above a plane nonconducting earth", Appl. Sci. Res., vol. B8, pp.  370-377, 1960.
  14. H. J. Frankena, "Transient phenomena associated with Sommerfeld's horizontal dipole problem", Appl. Sci. Res., vol. B8, pp.  357-368, 1960.
  15. C. H. Chapman, "Generalized ray theory for an inhomogeneous medium", Geophys. J. R. Astrolog. Soc., vol. 36, pp.  673-704, 1974.
  16. C. H. Chapman, "Exact and approximate generalized ray theory in vertically inhomogeneous media", Geophys. J. R. Astrolog. Soc., vol. 46, pp.  201-233, 1976.
  17. E. Heyman and L. B. Felsen, "Non-dispersive closed form approximations for transient propagation and scattering of ray fields", Wave Motion, vol. 7, pp.  335-358, 1985.
  18. E. Heyman and L. B. Felsen, "Weakly dispersive spectral theory of transients-Part I: Formulation and interpretation", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  80-86, Jan.  1987.
  19. E. Heyman and L. B. Felsen, "Weakly dispersive spectral theory of transients, part 2: Evaluation of the spectral integral", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  574-580, May  1987.
  20. E. Heyman, "Weakly dispersive spectral theory of transients, part 3: Applications", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1258-1266, Nov.  1987.
  21. M. A. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover, 1965.
  22. L. B. Felsen and N. Marcuvitz, 2.2 Radiation and Scattering of Waves, 2nd ed.   New York: IEEE Press, 1994.
  23. A. G. Tijhuis, Electromagnetic Inverse Profiling; Theory and Numerical Implementation , Utrecht: The Netherlands: VNU Sci. Press, 1987.
  24. G. Kristensson, "Transient electromagnetic wave propagation in waveguides", J. Electromagn. Waves Applicat., vol. 9, pp.  645-671,  1995.
  25. A. Erdélyi, Asymptotic Expansions , New York: Dover, 1956, ch. 4.
  26. J. T. Fokkema, P. M. van den Berg and M. Vissinga, "On the computation of Radon transforms of sesimic data", J. Seism. Explorat., vol. 1, pp.  93-105, 1992.
  27. H. M. de Ruiter, "Limits on the propagation constants of planar optical waveguide modes", Appl. Opt., vol. 20, pp.  731-732,  1981.
  28. W. C. Chew, 2.7.2 Waves and Fields in Inhomogeneous Media, 2nd ed.   New York: IEEE Press, 1995.
  29. D. Gabor, "Theory of communication-Part I", J. Inst. Elect. Eng., vol. 93, pp.  429-441, 1946.
  30. M. Born and E. Wolf, Principles of Optics, 5th ed.   Oxford: U.K.: Pergamon, 1975, pp.  494 -499. 
  31. J. L. Brown, "Analytic signals and product theorems for Hilbert transforms", IEEE Trans. Circuits Syst., vol. 21, pp.  790 -792, 1974.