2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

The Radiation Operator

Ismo V. Lindell Fellow, IEEE

Page 1701.

Abstract:

The concept of the radiation operator is introduced to assist in the analysis of various problems involving sources and their radiation fields. It gives the field outside the source region as operating on the field of a point source. Because there is a simple connection between the radiation vector describing the far-field and the radiation operator, it can be used to define fields anywhere outside the source region from their values in the far-field zone. Another important property of the radiation operator is its ability to express sources of fields given their radiation pattern and polarization in the far zone. The source of such a field can be written in the form of radiation operator operating on a current element, the delta function source. To interpret this in terms of computable functions, existing tables of operational rules for different classes of operators can be applied. Examples of radiation operators corresponding to different sources are given together with examples of sources corresponding to given radiation field patterns. Finally, it is shown that the radiation operator allows a considerable simplification to the derivation of the multipole expansion theory when compared to the classical recursion-formula derivation through spherical harmonic eigenfunctions.

References

  1. R. E. Collin and F. J. Zucker, Antenna Theory, New York: McGraw-Hill, 1969, p.  39. 
  2. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York: Wiley, 1981, pp.  23-25. 
  3. J. A. Kong, Electromagnetic Wave Theory, New York: Wiley, 1986, pp.  237-238. 
  4. S. Ramo, J. R. Whinnery and Th. van Duzer, Fields and Waves in Communication Electronics, 3rd. ed.   New York: Wiley, 1994, p.  594. 
  5. O. Heaviside, Electromagnetic Theory, London: Ernest Benn Ltd., (second reprint 1925),vol. I, II, III.
  6. I. V. Lindell, "Heaviside operational calculus in electromagnetic image theory", J. Electron. Waves Appl., vol. 11, no.  1, pp.  119-132, 1997.
  7. I. V. Lindell, "Heaviside operational rules applicable to electromagnetic problems", Prog. Electromagn. Res., vol. 26, pp.  295-333, 2000.
  8. I. V. Lindell, Methods for Electromagnetic Field Analysis, 2nd ed.   Oxford: U.K.: Oxford Univ. Press, 1995.
  9. G. A. Deschamps, "The Gaussian beam as a bundle of complex rays", Electron. Lett., vol. 7, no. 23, p.  684, 685, 1971.
  10. C. J. Bouwkamp and H. B. G. Casimir, "On multipole expansions in the theory of electromagnetic radiation", Physica, vol. 20, pp.  539-554, 1954.
  11. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 4th ed.   San Diego, CA: Academic, 1995.
  12. B. van der Pol, "A generalization of Maxwell's definition of solid harmonics to waves in n dimensions", Physica, vol. 3, no. 6, pp.  393-397, 1936.
  13. A. Erdelyi, "Zur theorie der kugelwellen", Physica , vol. 4, no. 2, pp.  107-120, 1937.
  14. J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.   Oxford: Clarendon, 1904,vol. I, pp.  194-231. 
  15. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, New York: Chelsea, 1965, pp.  129-137. 
  16. A. D. Yaghjian, "Simplified approach to probe-corrected spherical near-field scanning", Electron. Lett., vol. 20, no. 5, p.  195, 196, Mar.  1984.
  17. A. D. Yaghjian and R. C. Wittmann, "The receiving antenna as a linear differential operator: Application to spherical near-field scanning", IEEE Trans. Antennas Propagat., vol. 33, pp.  1175-1185, Nov.  1985 .
  18. R. C. Wittmann, "Spherical wave operators and the translation formulas", IEEE Trans. Antennas Propagat., vol. 36, pp.  1078-1087, Aug.  1988.
  19. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, New York: Gordon and Breach, 1986.
  20. I. V. Lindell, "Heaviside operational rules applicable to electromagnetic problems", J. Electron. Waves Appl., vol. 14, pp.  497-498, 2000.