2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000
Table of Contents for this issue
Complete paper in PDF format
Accurate Solution of the Volume
Integral Equation for High-Permittivity Scatterers
Jörg P. Kottmann and Olivier J. F. Martin
Page 1719.
Abstract:
We present a formalism based on the method of moment to solve
the volume integral equation using tetrahedral (3-D) and triangular (2-D)
elements. We introduce a regularization scheme to handle the strong singularity
of the Green's tensor. This regularization scheme is extended to neighboring
elements, which dramatically improves the accuracy and the convergence of
the technique. Scattering by high-permittivity scatterers, like semiconductors,can be accurately computed. Furthermore, plasmon-polariton resonances
in dispersive materials can also be reproduced.
References
-
Landolt-Börnstein, Numerical Data and Functional
Relationships in Science and Technology, Berlin: Springer-Verlag, 1982,vol. 17a.
-
P. Gay-Balmaz and J. R. Morsig, "3D planar radiating structures in stratified media", Int. J. Microwave Millimeter Wave CAE, vol. 3, pp. 330-343, 1997.
-
E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains", Astrophys. J., vol. 186, pp. 705-714,
1973.
-
O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds", Phys. Rev. E, vol. 58, no. 3, pp. 3909-3915, 1998.
-
M. F. Iskander, H. Y. Chen and J. E. Penner, "Optical scattering and absorption by branched chains of aerosols", Appl. Opt., vol. 28, no.
15, pp. 3083-3091, 1989.
-
C. E. Dungey and C. F. Bohren, "Light scattering by nonspherical particles: A refinement to the coupled-dipole method", J. Opt. Soc. Amer. A, vol. 8, no. 1, pp. 81-87, 1991.
-
N. B. Piller and O. J. F. Martin, "Increasing the performances of the coupled-dipole approximation: A spectral approach", IEEE Trans. Antennas
Propagat., vol. 46, pp. 1126-1137, Aug. 1998.
-
B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations", J. Opt. Soc. Amer. A, vol. 11, no. 4, pp.
1491-1499, 1994.
-
J. H. Richmond, "A wire grid model for scattering by conducting bodies", IEEE Trans. Antennas Propagat., vol. 14, pp.
782-786, June 1966.
-
D. H. Schaubert, D. R. Wilton and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. AP-32, pp.
77-85,
1984.
-
P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 2nd ed. Cambridge: U.K.: Cambridge Univ. Press, 1990.
-
R. D. Graglia, "The use of parametric elements in the moment method solution of static and dynamic volume integral equations", IEEE Trans.
Antennas Propagat., vol. 36, pp. 636-646, May 1988.
-
J. L. Volakis, A. Chatterjee and L. C. Kempel, "Review of the finite-element method for three-dimensional electromagnetic scattering", J. Opt. Soc. Amer.
A, vol. 11, no. 4, pp. 1422-1433, 1994.
-
D. R. Wilton, "Review of current status and trends in the use of integral equations in computational electromagnetics", Electromagnetics
, vol. 12, pp. 287-341, 1992.
-
A. D. Yaghjian, "Electric dyadic Green's functions in the source region", Proc. IEEE, vol. 68, pp. 248-263, 1980.
-
C.-T. Tai,
Dyadic Green Function in Electromagnetic Theory, New York: IEEE
Press, 1994.
-
A. P. Papagiannakis, "Application of a point-matching mom reduced scheme to scattering from finite cylinders", IEEE Trans. Microwave
Theory Tech., vol. 45, pp. 1545-1553, Sept. 1997.
-
C.-T. Tsai, H. Massoudi, C. H. Durney and M. F. Iskander, "A procedure for calculating fields inside arbitrarily shaped, inhomogeneous dielectric bodies using linear basis functions with the moment method", IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1131-1138, Nov. 1986.
-
A. P. M. Zwamborn and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems", IEEE Trans. Microwave Theory Tech., vol. 40, pp.
1757-1766, Sept. 1992.
-
M. F. Catedra, E. Gago and L. Nuño, "A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast fourier transform", IEEE Trans. Antennas
Propagat., vol. 37, pp. 528-537, May 1989.
-
H. Gan and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3-D inhomogeneous scatterer problems", J. Electromagn. Waves Applicat., vol. 9, no. 10, 1995.
-
Y. A. Eremin and V. I. Ivakhnenko, "Modeling of light scattering by nonspherical inhomogeneous particles", J. Quant. Spectrosc. Radiat. Transfer, vol. 60, no. 3, pp. 1-8, 1998.
-
T. K. Sarkar, S. M. Rao and A. R. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures", IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1568-1575, Nov. 1990.
-
D. A. Vechinski, S. M. Rao and T. K. Sarkar, "Transient scattering from three-dimensional arbitrarily shaped dielectric bodies", J. Opt. Soc. Amer. A, vol. 11, no. 4, pp. 1458-1469, 1994.
-
L. Mendes and E. Arvas, "TE-scattering from dense homogeneous infinite dielectric cylinders of arbitrary cross-section", IEEE Trans. Magn.
, vol. 27, pp. 4295-4298, May 1991.
-
S.-W. Lee, J. B. Boersma, C.-L. Law and G. A. Deschamps, "Singularity in Green's function and its numerical evaluation", IEEE Trans. Antennas Propagat., vol. 28, pp. 311-317, Mar. 1980.
-
D. R. Wilton and C. M. Butler, "Effective methods for solving integral and integro-differential equations", Electromagnetics, vol. 1, no.
3, pp. 289-308, 1981.
-
S. A. Jenkins and J. R. Bowler, "Numerical evaluation of singular matrix elements in three dimensions", IEEE Trans. Magn., vol. 27, pp. 4438-4444,
June 1991.
-
J. Rejeb, T. Sarkar and E. Arvas, "Extension of the MoM Laplacian solution to the general Helmholtz equation", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2579-2584, Nov. 1995.
-
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, London: McGraw-Hill, 1967.
-
I. M. Gel'fand and G. E. Shirkov, Generalized Functions, New York: Academic, 1964.
-
K. W. Morton, "Basic course in finite element methods",
Comput. Phys. Rep., vol. 6, pp. 1-72, 1987.
-
G. R. Cowper, "Gaussian quadrature formulas for triangles", Int. J. Numer. Methods Eng., vol. 7, no. 3, pp. 405
-408,
1973.
-
P. Hillion, "Numerical integration on a triangle",
Int. J. Numer. Methods Eng., vol. 11, pp. 797-815, 1977.
-
K. S. Sunder and R. A. Cookson, "Integration points for triangles and tetrahedrons obtained from the Gaussian quadrature points for a line", Comput.
Struct., vol. 21, no. 5, pp. 881-885, 1985.
-
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.