2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000
Table of Contents for this issue
Complete paper in PDF format
The Koch Monopole: A Small
Fractal Antenna
Carles Puente Baliarda, Member, IEEE Jordi Romeu, Member, IEEE and Angel Cardama Member, IEEE
Page 1773.
Abstract:
Fractal objects have some unique geometrical properties. One
of them is the possibility to enclose in a finite area an infinitely long
curve. The resulting curve is highly convoluted being nowhere differentiable.
One such curve is the Koch curve. In this paper, the behavior the Koch monopole
is numerically and experimentally analyzed. The results show that as the number
of iterations on the small fractal Koch monopole are increased, the
Q of the antenna approaches the fundamental limit for
small antennas.
References
-
C. Puente, R. Pous, J. Romeu and X. Garcia, "Antenas fractales o multifractales",
Spanish Patent no. 2112163, May 19,
1995.
-
C. Puente, J. Romeu, R. Pous, X. Garcia and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket", Electron. Lett., vol. 32, no. 1, pp. 1-2, Jan.
1996.
-
C. Puente, "Fractal antennas", Ph.D. dissertation,
Dept. Signal Theory and Commun., Universitat Politecnica de Catalunya, June 1997.
-
C. Puente, J. Romeu, R. Pous and A. Cardama, "On the behavior of the Sierpinski multiband antenna", IEEE Trans. Antennas Propagat., vol. 46, pp.
517-524, Apr. 1998.
-
E. A. Parker and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency-selective surfaces", IEE Proc.
H (Microwaves, Optics and Antennas), vol. 138, pp. 19
-22, Feb. 1991.
-
N. Cohen and R. G. Hohfeld, "Fractal loops and the small loop approximation", Commun. Quart., pp. 77-78, Winter 1996.
-
N. Cohen, "Fractal and shaped dipoles", Commun.
Quart., pp. 25-36, Spring 1996.
-
N. Cohen, "Fractal antennas: Part 2", Commun.
Quart., pp. 53-66, Summer 1996.
-
C. Puente, J. Romeu, R. Pous, J. Ramis and A. Hijazo, "Small but long Koch fractal monopole",
IEE Electron. Lett., vol. 34, pp. 9-10, Jan. 1998.
-
H. A. Wheeler, "Fundamental limitations of small antennas", Proc. IRE, vol. 35, pp. 1479-1488, Dec. 1947.
-
R. C. Hansen, "Fundamental limitations on antennas",
Proc. IEEE, vol. 69, pp. 170-182, Feb. 1981.
-
G. Goubau, "Multielement monopole antennas", in Proc. Workshop on Electrically Small Antennas ECOM, Ft. Monmouth, NJ, May 1976, pp. 63-67.
-
H. A. Wheeler, "Small antennas", IEEE Trans. Antennas
Propagat., vol. 23, pp. 462-469, July 1975.
-
J. S. McLean, "A re-examination of the fundamental limits on the radiation Q of electrically small antennas", IEEE Trans. Antennas Propagat., vol. 44, pp.
673-676, May 1996.
-
C. H. Walter, "Electrically small antennas studies at OSU", in Proc. Workshop on Electrically Small Antennas ECOM, Ft. Monmouth, NJ, May 1976, pp. 25-34.
-
K. Fujimoto, A. Henderson, K. Hirasawa and J. R. James, Small Antennas, West Sussex: Research Studies Press Ltd., Feb. 1988.
-
L. J. Chu, "Physical limitations on omni-directional antennas", J. Appl. Phys., vol. 19, pp. 1163-1175, Dec. 1948
.
-
R. E. Collin and C. Rothschild, "Evaluation of antenna Q", IEEE Trans. Antennas Propagat., vol. 12, pp. 23-27,
Jan. 1964.
-
H. O. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals, New Frontiers in Science, New York:
Springer-Verlag, 1992.
-
J. E. Hutchinson, "Fractals and self-similarity", Indiana
Univ. Math. J., vol. 30, pp. 713-747, 1981.
-
C. A. Balanis, Antenna Theory, Analysis and Design, New York: Wiley, 1982.
-
C. Puente, M. Navarro, J. Romeu and R. Pous, "Variations on the fractal Sierpinski antenna flare angle", in Proc. IEEE Antennas Propagat. Soc. Int. Symp. Dig., Atlanta, GA, June 1998, pp. 2340- 2341.