2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Derivation of a Condition for the Normal Gain Behavior of Pyramidal Horns

Krishnasamy T. Selvan

Page 1782.

Abstract:

The pyramidal horn exhibits a normal monotonically increasing gain versus frequency characteristic, only when its axial length is more than a certain minimum value for given aperture dimensions. In this letter, approximate equations are derived for estimating this minimum axial length.

References

  1. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York: Wiley, 1998.
  2. C. A. Balanis, Antenna Theory Analysis and Design, New York: Harper Row, 1982.
  3. K. T. Selvan, "Accurate design method for optimum gain pyramidal horns", Electron. Lett., vol. 35, no. 4, pp.  249-250, Feb.  1999.
  4. E. V. Jull, "Errors in the predicted gain of pyramidal horns", IEEE Trans. Antennas Propagat., vol. AP-21, pp.  25-31, Jan.  1973.
  5. J. F. Nye and W. Liang, "Theory and measurement of the field of a pyramidal horn", IEEE Trans. Antennas Propagat., vol. 44, pp.  1488-1498, Nov.  1996.
  6. E. V. Jull, "Finite-range gain of sectoral and pyramidal horns", Electron. Lett., vol. 6, no. 21, pp.  680-681, Oct.  1970.
  7. E. H. Braun, "Gain of electromagnetic horns", IRE Proc. , vol. 41, pp.  109-115, Jan.  1953.
  8. M. Kanda and R. D. Orr, "Near-field gain of a horn and an open-ended waveguide: comparison between theory and experiment", IEEE Trans. Antennas Propagat., vol.  35, pp.  33-40, Jan.  1987.
  9. M. Abramowitz, and I. A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover, 1977, p.  17.