2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 1, January 2000
Table of Contents for this issue
Complete paper in PDF format
Time-Domain Beam Propagation
Method and Its Application to Photonic Crystal Circuits
Masanori Koshiba,
Senior Member, IEEE
Yasuhide Tsuji,
Member, IEEE
and Masafumi Hikari
Page 102.
Abstract:
A time-domain beam propagation method (BPM) based on the finite-element
scheme is described for the analysis of reflections of both transverse electric
and transverse magnetic polarized pulses in waveguiding structures containing
arbitrarily shaped discontinuities. In order to avoid nonphysical reflections
from the computational window edges, the perfectly matched layer boundary
condition is introduced. The present algorithm using the Padé approximation
is, to our knowledge, the first time-domain beam propagation method which
can treat wide-band optical pulses. After validating this method for an optical
grating with modulated refrative indexes, various photonic crystal circuit
components are simulated.
References
-
H.-P.
Nolting and R.
März, "Results of benchmark tests for different
numerical BPM algorithms", J. Lightwave Technol., vol. 13, pp.
216- 224, Feb. 1995 .
-
M.
Koshiba and Y.
Tsuji, "A wide-angle finite element beam propagation
method", IEEE Photon. Technol. Lett., vol. 8, pp. 1208
- 1210, Sept. 1996 .
-
Y.
Tsuji, M.
Koshiba and T.
Tanabe, "A wide-angle beam propagation method based
on a finite element scheme", IEEE Trans. Magnet., vol. 33, pp.
1544- 1547, Mar. 1997 .
-
Y.
Tsuji, M.
Koshiba and T.
Shiraishi, "Finite element beam propagation method
for three-dimensional optical waveguide structures",
J. Lightwave Technol.
, vol. 15, pp. 1728- 1734, Sept. 1997 .
-
Y.
Tsuji and M.
Koshiba, "Finite element beam propagation method with
perfectly matched layer boundary conditions for three-dimensional optical
waveguides", Int. J. Numer. Modeling, to be published.
-
G. R.
Hadley, "Wide-angle beam propagation using Padé
approximant operators", Opt. Lett., vol. 17, pp. 1426
- 1428, Oct. 1992 .
-
K. S.
Yee, "Numerical solution of initial boundary value
problems involving Maxwell's equations", IEEE Trans. Antennas Propag., vol. AP-14, pp. 302- 307, May 1966 .
-
S.-T.
Chu and S.
Chaudhuri, "A finite-difference time-domain method
for the design and analysis of guided wave optical structures",
J. Lightwave
Technol., vol. 7, pp. 2033- 2038, Dec. 1989 .
-
J.
Yamauchi, M.
Mita, S.
Aoki and H.
Nakano, "Analysis of antireflection coatings using
the FD-TD method with the PML absorbing boundary condition",
IEEE Photon.
Technol. Lett., vol. 8, pp. 239-
241, Feb. 1996 .
-
A.
Mekis, J. C.
Chen, I.
Kurland, S.
Fan, P. R.
Villeneuve and J. D.
Joannopoulos, "High transmission through sharp
bends in photonic crystal waveguides", Phys. Rev. Lett., vol. 77, pp. 3787- 3790,
Oct. 1996 .
-
P.-L.
Liu, Q.
Zhao and F.-S.
Choa, "Slow-wave finite-difference beam propagation
method", IEEE Photon. Technol. Lett., vol. 7, pp. 890
- 892, Aug. 1995 .
-
G. H.
Jin, J.
Harari, J. P.
Vilcot and D.
Decoster, "An improved time-domain beam propagaton
method for integrated optics components", IEEE Photon. Technol. Lett., vol. 9, pp. 348- 350, Mar. 1997 .
-
Ü.
Pekel and R.
Mittra, "A finite element method frequency
domain application of the perfectly matched layer (PML) concept",
Microwave
Opt. Technol. Lett., vol. 9, pp. 117-
122, June 1995 .
-
E.
Yablonovitch, "Photonic band-gap structures",
J. Opt. Soc. Amer. B., vol. 10, pp. 293-
295, Feb. 1993 .
-
J.-P.
Berenger, "A perfectly matched layer for the absorption
of electromagnetic waves", J. Comput. Phys., vol. 114, pp.
185- 200, Oct. 1994 .
-
H. A.
Van der Vorst, "Bi:CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems",
SIAM J.
Sci. Stat. Comput., vol. 13, pp. 631-
644, Mar. 1992 .
-
K.
Hirayama, M.
Koshiba and M.
Suzuki, "Finite element analysis of dielectric slab
waveguide with finite periodic corrugation",
Trans. Inst. Electron. Inform. Commun.
Eng., vol. J69, pp. 724- 730, June 1986 .