2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Time-Domain Beam Propagation Method and Its Application to Photonic Crystal Circuits

Masanori Koshiba, Senior Member, IEEE Yasuhide Tsuji, Member, IEEE and Masafumi Hikari

Page 102.

Abstract:

A time-domain beam propagation method (BPM) based on the finite-element scheme is described for the analysis of reflections of both transverse electric and transverse magnetic polarized pulses in waveguiding structures containing arbitrarily shaped discontinuities. In order to avoid nonphysical reflections from the computational window edges, the perfectly matched layer boundary condition is introduced. The present algorithm using the Padé approximation is, to our knowledge, the first time-domain beam propagation method which can treat wide-band optical pulses. After validating this method for an optical grating with modulated refrative indexes, various photonic crystal circuit components are simulated.

References

  1. H.-P. Nolting and R. März, "Results of benchmark tests for different numerical BPM algorithms", J. Lightwave Technol., vol. 13, pp.  216- 224, Feb.  1995 .
  2. M. Koshiba and Y. Tsuji, "A wide-angle finite element beam propagation method", IEEE Photon. Technol. Lett., vol. 8, pp.  1208 - 1210, Sept.  1996 .
  3. Y. Tsuji, M. Koshiba and T. Tanabe, "A wide-angle beam propagation method based on a finite element scheme", IEEE Trans. Magnet., vol. 33, pp.  1544- 1547, Mar.  1997 .
  4. Y. Tsuji, M. Koshiba and T. Shiraishi, "Finite element beam propagation method for three-dimensional optical waveguide structures", J. Lightwave Technol. , vol. 15, pp.  1728- 1734, Sept.  1997 .
  5. Y. Tsuji and M. Koshiba, "Finite element beam propagation method with perfectly matched layer boundary conditions for three-dimensional optical waveguides", Int. J. Numer. Modeling, to be published.
  6. G. R. Hadley, "Wide-angle beam propagation using Padé approximant operators", Opt. Lett., vol. 17, pp.  1426 - 1428, Oct.  1992 .
  7. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations", IEEE Trans. Antennas Propag., vol. AP-14, pp.  302- 307, May  1966 .
  8. S.-T. Chu and S. Chaudhuri, "A finite-difference time-domain method for the design and analysis of guided wave optical structures", J. Lightwave Technol., vol. 7, pp.  2033- 2038, Dec.  1989 .
  9. J. Yamauchi, M. Mita, S. Aoki and H. Nakano, "Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition", IEEE Photon. Technol. Lett., vol. 8, pp.  239- 241, Feb.  1996 .
  10. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides", Phys. Rev. Lett., vol. 77, pp.  3787- 3790,  Oct.  1996 .
  11. P.-L. Liu, Q. Zhao and F.-S. Choa, "Slow-wave finite-difference beam propagation method", IEEE Photon. Technol. Lett., vol. 7, pp.  890 - 892, Aug.  1995 .
  12. G. H. Jin, J. Harari, J. P. Vilcot and D. Decoster, "An improved time-domain beam propagaton method for integrated optics components", IEEE Photon. Technol. Lett., vol. 9, pp.  348- 350, Mar.  1997 .
  13. Ü. Pekel and R. Mittra, "A finite element method frequency domain application of the perfectly matched layer (PML) concept", Microwave Opt. Technol. Lett., vol. 9, pp.  117- 122, June  1995 .
  14. E. Yablonovitch, "Photonic band-gap structures", J. Opt. Soc. Amer. B., vol. 10, pp.  293- 295, Feb.  1993 .
  15. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185- 200, Oct.  1994 .
  16. H. A. Van der Vorst, "Bi:CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Stat. Comput., vol. 13, pp.  631- 644, Mar.  1992 .
  17. K. Hirayama, M. Koshiba and M. Suzuki, "Finite element analysis of dielectric slab waveguide with finite periodic corrugation", Trans. Inst. Electron. Inform. Commun. Eng., vol. J69, pp.  724- 730, June  1986 .