2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Improved Three-Point Formulas Considering the Interface Conditions in the Finite-Difference Analysis of Step-Index Optical Devices

Yih-Peng Chiou, Yen-Chung Chiang and Hung-Chun Chang Member, IEEE, Member, OSA

Page 243.

Abstract:

A general relation, considering the interface conditions, between a sampled point and its nearby points is derived. Making use of the derived relation and the generalized Douglas scheme, the three-point formulas in the finite-difference modeling of step-index optical devices are extended to fourth order accuracy irrespective of the existence of the step-index interfaces. With numerical analysis and numerical assessment, several frequently used formulas are investigated.

References

  1. C. Vassallo, "1993-1995 optical mode solvers", Opt. Quantum Electron., vol. 29, pp.  95- 114, 1997.
  2. D. Yevick, "Some recent advances in field propagation techniques", Proc. SPIE, pp.  502- 511, 1996.
  3. M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles", Inst. Elect. Eng. Proc.-J., vol. 135, pp.  56- 63, 1988.
  4. C. Vassallo, "Improvement of finite difference methods for step-index optical waveguides", Inst. Elect. Eng. Proc.-J., vol. 139 , pp.  137- 142, 1992.
  5. L. Sun and G. L. Yip, "Modified finite-difference beam-propagation method based on the Douglas scheme", Opt. Lett., vol. 18, pp.  1229- 1231,  1993.
  6. J. Yamauchi, M. Sekiguchi, O. Uchiyama, J. Shibayama and H. Nakano, "Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides", IEEE Photon. Technol. Lett., vol. 9, pp.  961- 963, 1997.
  7. C. Vassallo, "Interest of improved three-point formulas for finite-difference modeling of optical devices", J. Opt. Soc. Amer. , vol. 14, pp.  3273- 3284, 1997.
  8. J. Yamauchi, J. Shibayama, O. Saiti, O. Uchiyama and H. Nakano, "Improved finite-difference beam propagation method based on the generalized Douglas scheme and its application to semivectorial analysis", J. Lightwave Technol., vol. 14, pp.  2401- 2406, 1996.
  9. P. Lüsse, K. Ramm and H.-G. Unger, "Comparison of a vectorial and new semiconductor finite-difference approach for optical waveguides", Opt. Quantum Electron., vol. 29, pp.  115- 120, 1997.
  10. G. R. Hadley, "Low-truncation-error finite difference equations for photonic simulation I: Beam propagation", J. Lightwave Technol., vol. 16, pp.  134- 141, 1998.
  11. Y. Chung and N. Dagli, "Analysis of z -invariant and z -variant semiconductor rib waveguides by explicit finite difference beam propagation method with nonuniform mesh configuration", IEEE J. Quantum Electron., vol. 27, pp.  2296- 2305,  1991.
  12. P.-L. Liu, S. L. Yang and D. M. Yuan, "The semivectorial beam propagation method", IEEE J. Quantum Electron., vol. 29, pp.  1205- 1211, 1993.
  13. W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method", IEEE J. Quantum Electron., vol. 29 , pp.  2639- 2649, 1993.
  14. A. Jennings, Matrix Computation for Engineers and Scientists, New York : Wiley, 1977.
  15. C. Vassallo and J. M. van der Keur, "Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers", J. Lightwave Technol., vol. 15, pp.  397- 402, 1997.
  16. M. Saini and E. K. Sharma, "Equivalent refractive index of MQW waveguides ", IEEE J. Quantum Electron., vol. 32, pp.  1383 - 1390, 1996.
  17. B. M. A. Rahman, Y. Liu and K. T. V. Grattan, "Finite-element modeling of one- and two-dimensional MQW semiconductor optical waveguides", IEEE Photon. Technol. Lett., vol. 8, pp.  928- 931, 1996.