2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 2, February 2000
Table of Contents for this issue
Complete paper in PDF format
Improved Three-Point Formulas
Considering the Interface Conditions in the Finite-Difference Analysis of
Step-Index Optical Devices
Yih-Peng Chiou,
Yen-Chung Chiang and Hung-Chun Chang
Member, IEEE, Member, OSA
Page 243.
Abstract:
A general relation, considering the interface conditions, between
a sampled point and its nearby points is derived. Making use of the derived
relation and the generalized Douglas scheme, the three-point formulas in the
finite-difference modeling of step-index optical devices are extended to fourth
order accuracy irrespective of the existence of the step-index interfaces.
With numerical analysis and numerical assessment, several frequently used
formulas are investigated.
References
-
C.
Vassallo, "1993-1995 optical mode solvers",
Opt. Quantum Electron., vol. 29, pp. 95-
114, 1997.
-
D.
Yevick, "Some recent advances in field propagation
techniques", Proc. SPIE, pp. 502-
511, 1996.
-
M. S.
Stern, "Semivectorial polarized finite difference method
for optical waveguides with arbitrary index profiles", Inst. Elect. Eng.
Proc.-J., vol. 135, pp. 56- 63, 1988.
-
C.
Vassallo, "Improvement of finite difference methods
for step-index optical waveguides", Inst. Elect. Eng. Proc.-J., vol. 139
, pp. 137- 142, 1992.
-
L.
Sun and G. L.
Yip, "Modified finite-difference beam-propagation method
based on the Douglas scheme", Opt. Lett., vol. 18, pp. 1229- 1231,
1993.
-
J.
Yamauchi, M.
Sekiguchi, O.
Uchiyama, J.
Shibayama and H.
Nakano, "Modified finite-difference formula for the
analysis of semivectorial modes in step-index optical waveguides",
IEEE Photon.
Technol. Lett., vol. 9, pp. 961-
963, 1997.
-
C.
Vassallo, "Interest of improved three-point formulas
for finite-difference modeling of optical devices", J. Opt. Soc. Amer.
, vol. 14, pp. 3273- 3284, 1997.
-
J.
Yamauchi, J.
Shibayama, O.
Saiti, O.
Uchiyama and H.
Nakano, "Improved finite-difference beam propagation
method based on the generalized Douglas scheme and its application to semivectorial
analysis",
J. Lightwave Technol., vol. 14, pp. 2401- 2406, 1996.
-
P.
Lüsse, K.
Ramm and H.-G.
Unger, "Comparison of a vectorial and new
semiconductor finite-difference approach for optical waveguides",
Opt. Quantum
Electron., vol. 29, pp. 115- 120, 1997.
-
G. R.
Hadley, "Low-truncation-error finite difference equations
for photonic simulation I: Beam propagation", J. Lightwave Technol., vol. 16, pp. 134- 141, 1998.
-
Y.
Chung and N.
Dagli, "Analysis of z -invariant
and z -variant semiconductor rib waveguides
by explicit finite difference beam propagation method with nonuniform mesh
configuration", IEEE J. Quantum Electron., vol. 27, pp. 2296- 2305,
1991.
-
P.-L.
Liu, S. L.
Yang and D. M.
Yuan, "The semivectorial beam propagation method",
IEEE J. Quantum Electron., vol. 29, pp. 1205- 1211, 1993.
-
W. P.
Huang and C. L.
Xu, "Simulation of three-dimensional optical waveguides
by a full-vector beam propagation method", IEEE J. Quantum Electron., vol. 29
, pp. 2639- 2649, 1993.
-
A.
Jennings,
Matrix Computation for Engineers and Scientists, New York : Wiley, 1977.
-
C.
Vassallo and J. M.
van der Keur, "Comparison of a few transparent
boundary conditions for finite-difference optical mode-solvers",
J. Lightwave
Technol., vol. 15, pp. 397- 402, 1997.
-
M.
Saini and E. K.
Sharma, "Equivalent refractive index of MQW waveguides
", IEEE J. Quantum Electron., vol. 32, pp. 1383
- 1390, 1996.
-
B. M. A.
Rahman, Y.
Liu and K. T. V.
Grattan, "Finite-element modeling of one-
and two-dimensional MQW semiconductor optical waveguides",
IEEE Photon.
Technol. Lett., vol. 8, pp. 928-
931, 1996.