2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Forces on a Rayleigh Particle in the Cover Region of a Planar Waveguide

L. N. Ng, B. J. Luff, M. N. Zervas, Member, IEEE and J. S. Wilkinson

Page 388.

Abstract:

We report on the optimization of a waveguide structure for the maximization of the radiation forces exerted on a Rayleigh particle in the cover region. The two main radiation forces involved are the transverse gradient force which attracts a particle into the waveguide and the combined scattering and dissipative forces which drive the particle forward along the channel. The dependence of these forces on parameters including the incident wavelength,the surrounding medium embedding the particles, and the polarizability of the particles is discussed. Both dielectric and metallic gold spheres of radius 10 nm are considered in the model. Special emphasis is devoted to the maximization of the transverse gradient force due to the optical intensity gradient at the waveguide surface, and the wavelength dependence of the polarizability of gold nanoparticles.

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure", Phys. Rev. Lett., vol. 24, pp.  156-159, Jan.  1970.
  2. A. Ashkin, "Optical levitation by radiation pressure", Appl. Phys. Lett., vol. 19, pp.  283-285, Oct.  1971 .
  3. A. Ashkin, "Trapping of atoms by resonance radiation pressure", Phys. Rev. Lett., vol. 40, pp.  729-732, Mar.  1978 .
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles", Opt. Lett., vol. 11, pp.  288-290,  May  1986.
  5. K. Svoboda and S. M. Block, "Optical trapping of Rayleigh metallic particles", Opt. Lett., vol. 19, pp.  930-932, July  1994.
  6. R. Omori, T. Kobayashi and S. Suzuki, "Observation of a single-beam gradient-force optical trap for dielectric particles in air", Opt. Lett., vol. 22, pp.  816-818,  June  1997.
  7. A. Ashkin, "Forces of a single beam gradient laser trap on a dielectric sphere in the ray optics regime", Biophys. J., vol. 61, pp.  569-582, Feb.  1992.
  8. M. Padgett and L. Allen, "Optical tweezers and spanners", Phys. World , vol. 10, pp.  35-38, June  1997.
  9. R. J. Cook and R. K. Hall, "An electromagnetic mirror for neutral atoms", Opt. Commun., vol. 43, pp.  258-260, May  1980.
  10. V. I. Balykin and V. S. Letokhov, "Laser optics of neutral atomic beams", Phys. Today, vol. 40, pp.  23-28, Apr.  1989.
  11. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam", Opt. Lett., vol. 17, pp.  772-774,  June  1992.
  12. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide", Opt. Lett., vol. 21, pp.  1768-1770,  Nov.  1996.
  13. L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers", Phys. Rev. Lett., vol. 79, pp.  645-648, July  1997 .
  14. K. Taguchi, H. Ueno, H. Matsuzaki and M. Ikeda, "Optical manipulation and observation of nonlinear phenomena from optically trapped microscopic object using optical fibers", in Proc. OECC Tech. Dig., July 1998, pp.  68- 69. 
  15. A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared beams", Nature, vol. 330, pp.  769-771, Dec.  1987 .
  16. T. Buican, M. J. Smith, H. A. Crissman, G. C. Salzman, C. C. Stewart and J. C. Martin, "Automated single-cell manipulation and sorting by light trapping", Appl. Opt., vol. 26, pp.  5311-5316,  Dec.  1987.
  17. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria", Nature, vol. 235, pp.  1517-1520, Mar.  1987 .
  18. A. Ashkin, "Application of laser radiation pressure", Science, vol. 210, pp.  1081-1088, Dec.  1980.
  19. S. Kawata, Y. Inouye and T. Sugiura, "Near-field scanning optical microscope with a laser trapped probe", Jpn. J. Appl. Phys., vol. 33, pp.  L1725-L1727, June  1994.
  20. M. Gu and P. C. Ke, "Image enhancement in near-field scanning optical microscopy with laser trapped metallic particles", Opt. Lett., vol.  24, pp.  74-76, Jan.  1999.
  21. R. Gussgard, T. Lindmo and I. Brevik, "Calculation of the trapping force in a strongly focused laser beam", J. Opt. Soc. Amer. B, vol. 9, pp.  1922-1930, Oct.  1992.
  22. J. P. Barton, D. R. Alexander and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam", J. Appl. Phys., vol. 64, p.  1632, 1988.
  23. J. P. Barton, D. R. Alexander and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam", J. Appl. Phys., vol. 65, p.  2900, 1989.
  24. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field", J. Opt. Soc. Amer. B, vol. 12, pp.  2429-2438, Dec.  1995.
  25. P. Zemanek, A. Jonas, L. Sramek and M. Liska, "Optical trapping of Rayleigh particles using a Gaussian standing wave", Opt. Commun., vol. 151, pp.  273 -285, June  1998.
  26. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime", Opt. Commun., vol. 124, pp.  529-541,  Mar.  1996.
  27. F. Depasse and D. Courjon, "Inductive forces generated by evanescent light fields: Application to local probe microscopy", Opt. Commun., vol.  87, pp.  79-83, Jan.  1992.
  28. M. Quinten, A. Pack and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles", Appl. Phys. B, vol. 68, pp.  87 -92, July  1999.
  29. K. Ajito, "Combined near-infrared Raman microprobe and laser trapping system: Application to the analysis of a single organic microdroplet in water", Appl. Spec., vol. 52, pp.  339-342, 1998.
  30. O. Parriaux and P. Dierauer, "Normalized expressions for the optical sensitivity of evanescent wave sensors", Opt. Lett., vol. 19, pp.  508-510, Apr.  1994 .
  31. O. Parriaux and G. J. Veldhuis, "Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors", J. Lightwave Technol., vol. 16, pp.  573-582, Apr.  1998.
  32. A. Yariv, Quantum Electronics, New York: Wiley, 1989, pp.  600-606. 
  33. S. Stenholm, "The semiclassical theory of laser cooling", Rev. Mod. Phys., vol. 58, pp.  699-739, July  1986 .
  34. S. Stenholm, "Light forces put a handle on the atom: To cool and trap atoms by laser light", Contemp. Phys., vol. 29, pp.  105-123,  1988.
  35. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, New York: Academic, 1969, pp.  32-37. 
  36. D. W. Pohl, Forces in Scanning Probes Methods, H. J. Guntherodt, et al. Eds. June 1997,vol. 22, pp.  235-248. 
  37. J. D. Jackson, Classical Electrodynamics, New York: Wiley, 1975, pp.  413-414. 
  38. R. D. Harris, "Waveguide surface plasmon resonance biosensor", Ph.D. dissertation, Optoelectronics Research Centre, Univ. of Southampton, U.K., Feb. 1996 .