2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Design Equations for the Reflectivity of Deep-Etch Distributed Bragg Reflector Gratings

K. J. Kasunic

Page 425.

Abstract:

This paper reports a computationally efficient, grid-independent method for calculating the reflectivity of deep-etch distributed Bragg reflector (DBR) gratings. The method employs Gaussian beam propagation in conjunction with a Fabry-Perot model that includes the effects of multiple reflections in multiple cavities. We include both grating pitch and number of Bragg pairs in our analysis. We obtain very good agreement with results generated by a Helmholtz equation solver.

References

  1. T. F. Krauss, B. Vogele, C. R. Stanley and R. M. De La Rue, "Waveguide microcavity based on photonic microstructures", IEEE Photon. Technol. Lett., vol. 9, pp.  176-178,  Feb.  1997.
  2. T. F. Krauss, O. Painter, A. Scherer, J. S. Roberts and R. M. De La Rue, "Photonic microstructures as laser mirrors", Opt. Eng., vol. 37, no. 4, pp.  1143-1147, 1998.
  3. T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukhaihara, F. Koyama and K. Iga, "A novel short-cavity laser with deep-grating distributed Bragg reflectors", Jpn. J Appl. Phys., vol. 35, no.  2B, pp.  1390-1394, 1996.
  4. R. Jambunathan and J. Singh, "Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers", IEEE J. Quanum. Electron. , vol. 33, pp.  1180-1189, July  1997.
  5. Y. Yuan, T. Brock, P. Bhattacharya, C. Caneau and R. Bhat, "Edge-emitting lasers with short-period semiconductor/air distributed Bragg reflector mirrors", IEEE Photon. Technol. Lett., vol. 9, pp.  881-883, July  1997.
  6. D. L. Caballero, "A theoretical development of exact solutions of multiple layer optical coatings", J. Opt. Soc., vol. 37, no.  3, pp.  176-180, 1947.
  7. D. G. Hall, R. R. Rice and J. D. Zino, "Simple gaussian-beam model for GaAlAs double-heterostructure laser-diode-to-diffused-waveguide coupling calculations", Opt. Lett. , vol. 4, no. 9, pp.  292-294, 1979.
  8. D. G. Hall, J. D. Spear-Zino, H. G. Koenig, R. R. Rice, J. K. Powers, G. H. Burkhart and P. D. Bear, "Edge coupling of a GaAlAs DH laser diode to a planar Ti:LiNbO3 waveguide", Appl. Opt., vol. 19, no. 11, pp.  1847-1852, 1980.
  9. P. Karioja and D. Howe, "Diode-laser-to-waveguide butt coupling", Appl. Opt., vol. 35, no. 3, pp.  404-416, 1996.
  10. Y. Sidorin and D. Howe, "Laser-diode wavelength tuning based on butt coupling into an optical fiber", Opt. Lett., vol. 22, no.  11, pp.  802-804, 1997.
  11. A. E. Siegman, Lasers, Mill Valley, CA: University Science Books, 1986, ch. 17.
  12. M. Mansuripur, "Analysis of multilayer thin-film structures containing magneto-optic and anistropic media at oblique incidence using 2 × 2 matrices", J. Appl. Phys., vol. 67, no.  10, pp.  6466-6475, 1990.
  13. G. R. Hadley, "Numerical simulation of reflecting structures by solution of the two-dimensional Helmholtz equation", Opt. Lett., vol.  19, no. 2, pp.  84-86, 1994.