2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Two-Module Stage Optical Switch Network

Hideaki Okayama, Member, IEEE, Member, OSA Yutaka Okabe, Toru Arai, Takeshi Kamijoh, Member, IEEE and Taiji Tsuruoka

Page 469.

Abstract:

A large-scale optical switch array based on guided-wave technology using two-module-stage network architecture is proposed. Networks are derived from a generalized three-stage switch network. Two types of architecture are demonstrated. In the first, building blocks in each module are 1× n, n× m nonblocking switches or n× r switch that can route limited numbers of input signal. In the second, crossbar, Banyan, or four-stage wide-sense nonblocking network is used as building blocks. The interconnection is simpler than for the first type. Network architectures that use Banyan or wide-sense nonblocking network building blocks are classed as thinned-out Banyan networks.

References

  1. I. P. Kaminow, and T. L. Koch, Eds., Optical Fiber Telecommunications III-B, London: U.K.: Academic, 1997, ch. 10.
  2. H. S. Hinton, An Introduction to Photonic Switching Fabrics, New York: Plenum, 1993, ch. 3.
  3. R. A. Spanke, "Architectures for guided-wave optical switching systems", IEEE Commun. Mag., vol. 25, pp.  42-48, 1987.
  4. H. Okayama, Y. Okabe, T. Arai, T. Kamijoh and N. Sakamoto, "Optical switch network based on two module stage architecture", IEICE , Tech. Rep. SSE98-172, 1998 .
  5. C. Clos, "A study of nonblocking switching networks", Bell Syst. Tech. J., vol. 31, pp.  443-468, 1952.
  6. R. A. Spanke, "Architectures for large nonblocking optical space switches", IEEE J. Quantum Electron., vol. QE-22, pp.  964-967,  1986.
  7. H. Okayama, Y. Okabe, T. Arai and N. Sakamoto, "Optical switch network using two stage module architecture", in Proc. General Conf. IEICE, Mar. 1999.
  8. H. Okayama, Y. Okabe, T. Arai and T. Tsuruoka, "Waveguide array optical switching element", IEICE, Tech. Rep. PS99-5, Apr.1999.
  9. H. Okayama, Y. Okabe, T. Kamijoh and N. Sakamoto, "Optical switch array using Banyan network", IEICE Trans. Commun., vol. E82-B, pp.  365-372, 1999.
  10. H. Okayama, Y. Okabe and T. Kamijoh, "Large-scale optical switch array", in Tech. Digest Photon. Switching, Sendai, Japan,Apr. 1996,PThB2, pp.  174-175. 
  11. T. Goh, A. Himeno, M. Okano, H. Takahashi and K. Hattori, "High-extinction ratio and low-loss silica-based 8x8 strictly nonblocking thermooptic matrix switch", J. Lightwave Technol. , vol. 17, pp.  1192-1197, 1999.
  12. M. Bachmann, Ch. Nadler, P. A. Besse and H. Melchior, "Compact polarization-insensitive multi-leg 1× 4 Mach-Zehnder switch in InGaAsP/InP", in Proc. 20th European Conf. Opt. Commun., Firenze, Italy,Sept. 1994, pp.  519- 522. 
  13. S. Keshav and R. Sharma, "Issues and trends in router design", IEEE Commun. Mag., pp.  144-151, May  1998.
  14. T. J. Cloonan, G. W. Richards, F. B. McCormick and A. L. Lentine, "Extended generalized shuffle network architectures for free-space photonic switching", in Proc. Photon. Switching , Salt Lake City, Mar. 1991, pp.  43-47. 
  15. H. Okayama and M. Kawahara, "Experiment on deflector selector optical switch matrix", Electron. Lett., vol. 28, pp.  638-639, 1992.
  16. C. R. Doerr and C. Dragone, "Proposed optical cross connect using a planar arrangement of beam steerers", IEEE Photon. Technol. Lett., vol. 11, pp.  197-199, 1999.