2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

A New Family of Space/Wavelength/Time Spread Three-Dimensional Optical Code for OCDMA Networks

Sangin Kim, Kyungsik Yu and Namkyoo Park Member, IEEE, Member, OSA

Page 502.

Abstract:

A new family of space/wavelength/time spread three-dimensional (3-D) optical codes for optical code-division multiple-access (OCDMA) networks has been proposed. Two types of 3-D codes have been constructed: 3-D codes with single pulse per plane and 3-D codes with multiple pulses per plane. Both codes are based on the prime sequence algorithm and have shown improved performance compared to the previously proposed two-dimensional (2-D) prime code. Effective implementation of the 3-D code has also been proposed. In order to eliminate the requirement of fiber ribbons and multiple star couplers in space/wavelength/time spread 3-D code based optical networks, a wavelength 2/time scheme has been suggested, in which the periodic property of an arrayed waveguide grating (AWG) is used. It has been shown that the system performance can be maximized for given resources with a proper choice of the wavelength2/time scheme. Due to the improved performance of the 3-D code and the effective architecture of the wavelength2/time scheme, the feasibility of the OCDMA network is much enhanced.

References

  1. F. R. K. Chung, J. A. Salehi and V. K. Wei, "Optical orthogonal codes: Design, analysis and applications", IEEE Trans. Inform. Theory, vol. 35, pp.  595-604,  May  1989.
  2. J. A. Salehi, "Code division multiple access techniques in optical fiber networks-Part I: Fundamental principles", IEEE Trans. Commun., vol. 37, pp.  824-833, Aug.  1989.
  3. J. A. Salehi and C. A. Brackett, "Code division multiple access techniques in optical fiber networks-Part II: System performance analysis", IEEE Trans. Commun., vol. 37, pp.  834-850, Aug.  1989.
  4. H. Chung and P. V. Kumar, "Optical orthogonal codes-New bounds and an optimal construction", IEEE Trans. Inform. Theory, vol. 36, pp.  866-873,  July  1990.
  5. A. A. Shaar and P. A. Davies, "Prime sequences: Quasi optimal sequences for channel code division multiplexing", Electron. Lett., vol. 19, pp.  888-889,  Aug.  1989.
  6. A. S. Holmes and R. R. Syms, "All optical CDMA using quasi prime code", J. Lightwave Technol., vol. 10, pp.  279-286, Feb.  1992.
  7. S. V. Maric, Z. I. Kostic and E. L. Titelbaum, "A new family of optical orthogonal sequences for use in spread spectrum fiber optic local area networks", IEEE Trans. Commun., vol. 41, pp.  1217-1221, Aug.  1993.
  8. S. V. Maric, "New family of algebraically designed optical orthogonal codes for fiber optic CDMA networks", Electron. Lett., vol. 29, pp.  538-539, Mar.  1993.
  9. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: The Netherlands: North-Holland, 1986.
  10. G.-C. Yang and J.-Y. Jaw, "Performance analysis and sequence designs of synchronous code-division multiple access systems with multi-media services,"in Proc. Inst. Elect. Eng.-Communications, Dec. 1994,vol. 141, pp.  371-378. 
  11. E. Park, A. J. Mendez and E. M. Garmire, "Temporal/spatial optical CDMA networks: Design, demonstration and comparison with temporal network", IEEE Photon. Technol. Lett., vol. 4, pp.  1160-1162, Oct.  1992.
  12. E. S. Shivaleela, K. N. Sivarajan and A. Selvarajan, "Design of new family of two-dimensional codes for fiber-optic CDMA networks", J. Lightwave Technol., vol. 16, no. 4, pp.  501-508, Apr.  1998.
  13. A. J. Mendez, J. L. Lambert, J.-M. Moroonkian and R. M. Gargliadi, "Sythesis and demonstrated high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput", IEEE Photon. Technol. Lett., vol. 6, pp.  1146-1149,  1994.
  14. L. Tancevski and I. Andonovic, "Wavelength hopping/time spreading code division multiple access systems", Electron. Lett., vol. 30, no.  17, pp.  1388-1390, 1994.
  15. G.-C. Yang and W. C. Kwong, "Performance comparison of multiwavelength CDMA and WDMA + CDMA for fiber-optic networks", IEEE Trans. Commun., vol. 45, no. 11, pp.  1426-1434, Nov.  1997.
  16. T. Pfeiffer, B. Deppisch, M. Witte and R. Heidemann, "Optical stability of a spectrally encoded optical CDMA system using inexpensive transmitters without spectral control", IEEE Photon. Technol. Lett., vol. 11, pp.  916 -918, 1999.
  17. A. J. Mendez and R. M. Gagliardi, "Code division multiple access (CDMA) enhancement of wavelength division multiple access (WDM) systems", in IEEE Int. Conf. Commun. (ICC'95), Seattle, WA, 1995,paper 8.3, pp.  271-276. 
  18. A. J. Mendez, "WDM Matrix coding: A novel approach to ultra-dense networks", in WDM Components Conf., Photon. West'96, vol. 2690, 1996, pp.  50-62. 
  19. R. M. Gagliardi and A. J. Mendez, "Performance improvement with hybrid WDM and CDMA optical communications", in Proc. WDM Components Conf., Photon.s West'96, vol. 2690, 1996, pp.  88-96. 
  20. A. J. Mendez and R. M. Gagliardi, "Varieties and characteristics of discrete spectral encoding (DSE)", in Proc. IEEE 4th Int. Symp. Spread Spectrum Techniques Appl. (ISSSTA'96), 1996, IEEE Conf. Proc. 96TH8210, pp.  438-444. 
  21. A. J. Mendez and R. M. Gagliardi, "Design and analysis of wavelength division multiplex (WDM) and code division multiple access (CDMA) hybrids (WCH)", in Proc. IEEE/LEOS'96, 1996, paper WX4, pp.  185-186. 
  22. H. Takahashi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide N × N wavelength multiplexer", J. Lightwave Technol., vol. 13, pp.  447-455, Mar.  1995.