2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Photonic Crystal Distributed Feedback Fiber Lasers with Bragg Gratings

Thomas Søndergaard

Page 589.

Abstract:

Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based on standard step index fibers. This makes possible realization of fiber lasers with a low pump threshold (small mode area), and fiber lasers suitable for high-power applications (large mode area).

References

  1. T. A. Birks, J. C. Knight and P. S. Russel, "Endlessly single-mode photonic crystal fiber", Opt. Lett., vol. 22, no. 13, pp.  961-963, July  1997.
  2. J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett., vol. 21, no.  19, pp.  1547-9, Oct.  1996.
  3. J. C. Knight, T. A. Birks, P. S. J. Russell and J. P. Sandro, "Properties of photonic crystal fiber and the effective index model", J. Opt. Soc. Amer. A, vol. 15, no. 3, pp.  748-52, March  1998.
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and J.-P. de Sandro, "Large mode area photonic crystal fibre", Electron. Lett., vol. 34, no. 13, pp.  1347-1348, June  1998.
  5. J. C. Knight, J. Broeng, T. A. Birks and P. S. J. Russell, "Photonic band gap guidance in optical fibers", Science-AAAS-Weekly Paper Edition, vol. 282, no.  5393, pp.  1476-1477, 1998.
  6. J. Broeng, T. Søndergaard, S. E. Barkou, P. M. Barbeito and A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fibres", J. Opt. A: Pure Appl. Opt., vol. 1, no. 4, pp.  477 -82,  1999.
  7. P. J. Bennett, T. M. Monro and D. J. Richardson, "A robust, large air fill fraction holey fibre", in Proc. CLEO'99, May 23-28 1999,paper CWF64,
  8. B. J. Mangan, J. C. Knight and T. A. Birks, "Dual-core photonic crystal fibre", in Proc. CLEO'99 , May 23-28 1999, p.  JFB8. 
  9. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks and P. S. J. Russell, "Highly increased photonic band gaps in silica/air structures", Opt. Commun., vol. 156, pp.  240 -244, Nov.  1998.
  10. S. E. Barkou, J. Broeng and A. Bjarklev, "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect", Opt. Lett. , vol. 24, no. 1, pp.  46-48, Jan.  1999.
  11. A. Bjarklev, J. Broeng, K. Dridi and S. Barkou, "Dispersion properties of photonic crystal fibres", in Proc. 24th European Conf. Opt. Commun., ECOC'98, vol. 1, Sept. 20-24 1998, pp.  135-36. 
  12. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos and O. L. Alerh, "Accurate theoretical analysis of photonic band-gap materials", Phys. Rev. B, vol. 48, no. 11, pp.  8434 -8437, September  1993.
  13. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos and O. L. Alerh, "Erratum: Accurate theoretical analysis of photonic band-gap materials", Phys. Rev. B, vol. 55, no. 23, p.  15942,  June  1997.
  14. M. P. Teter, M. C. Payne and D. C. Allan, "Solution of Schrödinger's equation for large systems", Phys. Rev. B, vol. 40, no. 18, pp.  12 255-12 263, Dec.  1989.
  15. A. Ferrando, E. Silvestre, J. J. Miret and P. Andrés, "Full-vector analysis of a realistic photonic crystal fiber", Opt. Lett. , vol. 24, no. 5, pp.  276-278, Mar.  1999.
  16. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers", J. Appl. Phys., vol. 43, no. 5, pp.  2327-2335, May  1972.
  17. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach", Appl. Opt., vol. 26, no. 16, pp.  3473-3478, August  1987.
  18. V. C. Lauridsen, T. Søndergaard, P. Varming and J. H. Povlsen, "Design of distributed feedback fibre lasers", in Proc. 11th Int. Conf. Integr. Opt. Optic.l Fibre Commun. 23rd European Conf. Optic.l Commun. IOOC-ECOC 97, (Conf. Publ.), vol. 3, 1997, pp.  39- 42. 
  19. E. Desurvire, Erbium-Doped Fiber Amplifiers, New York: Wiley, 1994.
  20. K. R. Jinendra, R. S. Windeler and A. J. Stentz, "Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm", in Proc. CLEO'99, May 23-28 1999, paper CPD8-1,
  21. K. M. Ho, C. T. Chan and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures", Phys. Rev. Lett., vol. 65, no. 25, pp.  3152-5, Dec.  1990.