2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Theoretical Basis of Polarization Mode Dispersion Equalization up to the Second Order

Teruhiko Kudou, Midori Iguchi, Masaru Masuda and Takeshi Ozeki Member, IEEE, Member, OSA

Page 614.

Abstract:

We introduce a theoretical basis of polarization mode dispersion (PMD) equalizers based on the operator representation of PMD using Taylor's expansion. The two types of configuration of PMD equalizers are derived as the inverse of diagonalization operators and delay time difference compensation. One is a type using physical rotation of quarter wave phase plates. The other is a type using variable phase shifters suitable for PLC integration. Waveform comparison algorithm was simulated to show the existence of multiple equivalent optimum points due to the symmetry and periodicity of optical circuits. The second order PMD equalization is discussed briefly on the case of cascading the first and the second PMD equalizing circuits with two different polarization state converters.

References

  1. S. Akiba, "Long-haul optical amplifier system engineering based on EDFA technology", Optic. Amp. Their Applications, vol. 14, 1993.
  2. F. Heismann, "Fast polarization controllers and scramblers for high-speed lightwave systems", in Proc. Tech. Dig. OFC'95, 1995, paper TuD3,
  3. B. Clesca, J. P. Thiery, L. Pierre, V. Havard and F. Bruyere, "Impact of polarization mode dispersion on 10 Gb/s terrestrial systems over nondispersion-shifted fiber", Electron. Lett., vol.  31, p.  1594, 1995.
  4. T. Ozeki, M. Yoshimura, T. Kudo and H. Ibe, "Polarization-mode-dispersion equalization experiment using a variable equalizing circuit controlled by pulse-waveform-comparison algorithm", in Proc. Optic. Fiber Commun., 1994 San Jose (USA), vol. 24, Washington, DC, 1994,paper TuN4, p.  62. 
  5. J. H. Winters and M. A. Santoro, "Experimental equalization of polarization mode dispersion", Photon. Technol. Lett., vol. 2, p.  591, 1990.
  6. T. Takahashi, T. Imai and M. Aiki, "Automatic compensation technique for timewise fluctuating polarization mode dispersion in-line amplifier systems", Electron. Lett., vol. 30, p.  348, 1994.
  7. F. Heismann, D. A. Fishman and D. L. Wilson, "Equalization of the 1st-order polarization mode dispersion in a 10 Gb/s transmission system", presented at the Proc. ECOC'98 , Madrid, Spain, paper WdC11, 1998.
  8. C. D. Poole and R. E. Wagner, "Phenomenological approach to polarization dispersion in single-mode fibers", Electron. Lett., vol. 22, pp.  1029-1030,  1986.
  9. G. J. Foschini and C. D. Poole, "Higher oreder PMD", J. Lightwave Technol., vol.  9, p.  1439, 1991.
  10. T. Ozeki and K. Ogawa, "Correct definition of PMD", presented at the IEICE Spring Conf.95, 1995.
  11. T. Ozeki, "Redefinition of second-order PMD", presented at the OFC'99 Workshop,.
  12. T. Kudou, M. Masuda and T. Ozeki, "Formulation of Higher-Order PMD Using Transfer Function Matrix", IEIEC Tech. Rep., PS-98-82, 1999.
  13. G. B. Arfken and H. J. Weber, Method of Theoretical Physics, San Diego, CA: Academic, 1995, p.  104. 
  14. M. Sharma, H. Ibe and T. Ozeki, "Optical circuits for equalizing group delay dispersion of optical fibers", J. Lightwave Technol., vol. 12, pp.  1759-1765, Oct.  1994.
  15. K. Jinguji, K. Takiguchi and M. Kawachi, "Design of a variable group gelay dispersion qualizer using a lattice-form programmable optical frequency filter", Proc. Tech. Dig. ECOC'94, 1994.