2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Guided-Mode and Leaky-Mode Analysis by Imaginary Distance Beam Propagation Method Based on Finite Element Scheme

Yasuhide Tsuji, Member, IEEE and Masanori Koshiba Senior Member, IEEE

Page 618.

Abstract:

As a simple analysis method to solve eigenmodes of optical waveguides,we present an imaginary distance beam propagation method (BPM) based on finite element scheme. The matrices used in the beam propagation analysis are essentially complex, so lossy optical waveguides can be easily treated. Moreover, employing the transparent boundary condition or perfectly matched layer boundary condition,the validity of which has been already confirmed in the real distance BPM,we can easily treat not only guided modes but leaky ones. To show the validity and usefulness of this approach, eigenmodes of two-and three-dimensional leaky waveguides, and optical fibers are calculated.

References

  1. S. M. Saad, "Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  894 -899, Oct.  1985.
  2. K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides", Opt. Quantum Electron., vol. 26, pp.  5113-5134, 1994.
  3. M. D. Feit and J. A. Fleck Jr., "Light propagation in graded-index optical fibers", Appl. Opt., vol. 17, pp.  3990 -3998, Dec.  1978.
  4. H.-P. Nolting and R. März, "Results of benchmark tests for different numerical BPM algorithm", J. Lightwave Technol., vol. 13, pp.  216-224, Feb.  1995.
  5. Y. Tsuji and M. Koshiba, "A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides", J. Lightwave Technol., vol. 14, pp.  217-222, Feb.  1996.
  6. M. Koshiba and Y. Tsuji, "A wide-angle finite-element beam propagation method", IEEE Photon. Technol. Lett., vol. 8, pp.  1208 -1210, Sept.  1996.
  7. Y. Tsuji, M. Koshiba and T. Shiraishi, "Finite element beam propagation method for three-dimensional optical waveguide structures", J. Lightwave Technol. , vol. 15, pp.  1728-1734, Sept.  1997.
  8. Y. Tsuji and M. Koshiba, "Simple and efficient adaptive mesh generation for guided-mode and beam-propagation solutions", IEICE Trans. Electron. , vol. E81-C, pp.  1814-1820, Dec.  1998.
  9. D. Yevick and B. Hermansson, "New approach to lossy optical waveguide", Electron. Lett., vol. 21, pp.  1029-1030, Oct.  1985 .
  10. D. Yevick and W. Bardyszewskky, "Correspondence of variational finite difference (relaxation) and imaginary-distance propagatoin methods for modal analysis", Opt. Lett., vol. 17, pp.  329-330, Mar.  1992.
  11. C. L. Xu, W. P. Huang and S. K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method", J. Lightwave Technol., vol. 11, pp.  1209-1215, July  1993.
  12. J. C. Chen and S. Jüngling, "Computation of high-order waveguide modes by imaginary-distance beam propagation method", Opt. Quantum Electron., vol. 26, pp.  S199-S205, 1994.
  13. F. Wijnands, H. J. W. M. Hoekstra, G. J. M. Krijinen and R. M. de Ridder, "Modal fields calculation using the finite difference beam propagation method", J. Lightwave Technol., vol. 12, pp.  2066-2071, Dec.  1994.
  14. S. Jüngling and J. C. Chen, "Imaginary distance beam propagation for passive and active waveguide structures", Progr. Electromagn. Res. Symp., July  24-28, 1995.
  15. J. Shibayama, M. Sekiguchi, J. Yamauchi and H. Nakano, "Eigenmode analysis of optical waveguides by an improved finite-difference imaginary-distance beam propagation method", Trans. IEICE, vol. J81-C-I, pp.  9-16,  Jan.  1998.
  16. G. R. Hadley, "Transparent boundary condition for the beam propagation method", Opt. Lett., vol. 16, pp.  624-626, May  1991.
  17. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, October  1994.
  18. Ü. Pekel and R. Mittra, "A finite-element method frequency-domain application of the perfectly matched layer (PML) concept", Microwave Opt. Technol. Lett., vol. 9, pp.  117-122, June  1995.
  19. W. P. Huang, C. L. Xu and K. Yokoyama, "The perfectly matched layer boundary condition for modal analysis of optical waveguides: Leaky mode calculations", IEEE Photon. Technol. Lett., May  1996.
  20. M. Koshiba, Optical Waveguide Theory by the Finite Element Method, Tokyo, Japan/Dordrecht, Germany: KTK Scientific/Kluwer Academic, 1992.
  21. H. E. Hernández-Figueroa, F. A. Fernández, Y. Lu and J. B. Davies, "Vectorial finite element modeling of 2D leaky waveguides", IEEE Ttrans. Magnet., vol. 31, pp.  1710-1713, May  1995.