2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Curvilinear Hybrid Edge/Nodal Elements with Triangular Shape for Guided-Wave Problems

Masanori Koshiba, Senior Member, IEEE and Yasuhide Tsuji Member, IEEE

Page 737.

Abstract:

A unified approach using curvilinear hybrid edge/nodal elements with triangular shape is, for the first time, described for the study of guided-wave problems. Not only the lowest order (fundamental) but the higher order elements are systematically constructed. The advantage of curvilinear elements lies in the fact that they can model curved boundaries with more accuracy and lesser number of degrees of freedom than rectilinear elements. The vector basis functions derived here are also applicable to rectilinear cases. To show the validity and usefulness of the present approach, computed results are illustrated for rib waveguides with straight boundaries and circular waveguides with large refractive-index differences.

References

  1. J.-F. Lee, D.-K. Sun and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1262-1271, Aug.  1991.
  2. M. Koshiba and K. Inoue, "Simple and efficient finite-element analysis of microwave and optical waveguides", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  371-377, Feb.  1992.
  3. M. Koshiba, S. Maruyama and K. Hirayama, "A vector finite element method with the high-order mixed-interpolation type triangular elements for optical waveguiding problems", J. Lightwave Technol., vol. 12, pp.  495-502, Mar.  1994 .
  4. J. S. Wang and N. Ida, "Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation", IEEE Trans. Magnet. , vol. 29, pp.  1491-1494, Mar.  1993.
  5. G. E. Antilla and N. G. Alexopoulos, "Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach", J. Opt. Soc. Amer. A, vol. 11, pp.  1445-1457, Apr.  1994 .
  6. J. C. Nedelec, "Mixed finite elements in R3", Numer. Math. , vol. 35, pp.  315-341, 1980.
  7. A. F. Peterson, "Vector finite element formulation for scattering from two-dimensional heterogeneous bodies", IEEE Trans. Antennas Propagat., vol. AP-43, pp.  357-365, Mar.  1994.
  8. G. Mur and A. T. Hoop, "A finite element method for computing three-dimensional electromagnetic fields in inhomogeneous media", IEEE Trans. Magnet., vol. MAG-21, pp.  2188-2191, Nov.  1985.
  9. O. C. Zienkiewitz, The Finite Element Method, 3rd ed.   London: U.K.: McGraw-Hill, 1977 .
  10. M. Koshiba, Optical Waveguide Theory by the Finite Element Method, Tokyo: Japan: KTK Scientific/Kluwer, 1992.