2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Buffered Fixed Routing: A Routing Protocol for Real-Time Transport in Grid Networks

Jinhan Song and Saewoong Bahk

Page 757.

Abstract:

In this paper we propose a new routing protocol called buffered fixed routing (BFR) for real-time applications on grid networks. While previous routing protocols for grid networks have been designed to improve network throughput, the BFR scheme is proposed to guarantee the end-to-end packet delay and sequencing without loss by using finite buffers at each node. Thus the proposed scheme can satisfy quality-of-service (QoS) requirements of real-time applications. The BFR scheme uses the token on the row ring to provide QoS guarantees. The performance of the BFR scheme is analyzed by using the Geom/Geom/1 queueing system under uniform traffic. In the simulation, the BFR scheme shows the zero-loss, high-throughput performance with the minimum delay variation compared to other routing protocols such as store and forward routing, deflection routing and vertical routing. In addition, it has shown the smallest average delay at intermediate and heavy loads.

References

  1. B. Mukherjee, Optical Communication Networks, New York: McGraw-Hill, 1997.
  2. C. Baransel, W. Dobosiewicz and P. Gburzynski, "Routing in multihop packet switching networks: Gb/s challenge", IEEE Network, pp.  38 -61, May/June  1995 .
  3. A. G. Greenberg and J. Goodman, "Sharp approximate models of deflection routing in mesh networks", IEEE Trans. Commun., vol. 41, pp.  210-223, Jan.  1993.
  4. W. Dobosiewicz and P. Gburzynski, "A bounded-hop-count deflection scheme for Manhattan-street networks", in Proc. IEEE INFOCOM`96, 1996, pp.  172-179. 
  5. E. A. Varvarigos and J. P. Lang, "Performance analysis of deflection routing with virtual circuits in a Manhattan street network", in Proc. IEEE GLOBECOM`96, 1996, pp.  1544-1548. 
  6. C. Brackett et al., "A scalable multiwavelength multihop optical network: a proposal for research on all-optical networks", J. Lightwave Technol., vol. 11, pp.  736-753, May/June  1993.
  7. O. Gerstel, "On the future of wavelength routing networks", IEEE Network, vol. 10, pp.  14-20, Nov./Dec.  1996.
  8. K. Bala et al., "Toward hitless reconfiguration in WDM optical networks for ATM transport", in Proc. IEEE GLOBECOM`96, 1996, pp.  316-320. 
  9. N. F. Maxemchuk, "Routing in the Manhattan street network", IEEE Trans. Commun., vol. 35, pp.  503-512, May  1987.
  10. A. S. Acampora and S. I. A. Shah, "Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing", in Proc. IEEE INFOCOM`91, 1991, pp.  10-19. 
  11. F. Borgonovo, L. Fratta and F. Tonelli, "Circuit service in deflection networks", in Proc. IEEE INFOCOM`91, 1991, pp.  69- 75. 
  12. E. Karasan and E. Ayanoglu, "Performance of WDM transport networks", IEEE J. Select. Areas Commun., vol. 16, no. 7, pp.  1081-1096, 1998 .
  13. M. Schwartz, Broadband Integrated Networks, Englewood Cliffs, NJ: Prentice Hall, 1996.
  14. L. Kleinrock, Queueing Systems Volume 1; Theory, New York: Wiley, 1975.
  15. "Ptolemy 0.6", http://ptolemy.eecs.berkeley.edu, University of California at Berkeley.