2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

InP-InGaAs Single HBT Technology for Photoreceiver OEIC's at 40 Gb/s and Beyond

D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V. Schwarz and H. Jäckel

Page 992.

Abstract:

We describe an advanced InP-InGaAs-based technology for the monolithic integration of pin-photodiodes and SHBT-transistors. Both devices are processed using the same epitaxial grown layer structure. Employing this technology, we have designed and fabricated two photoreceivers achieving transimpedance gains of 170 /380 and optical/electrical bandwidths of 50 GHz/34 GHz. To the best of our knowledge, this is the highest bandwidth of any heterojunction bipolar transitor (HBT)-based photoreceiver optoelectronic integrated circuit (OEIC) published to date. We even predict a bandwidth of 60 GHz for the same circuit topology by a simple reduction of the photodiode diameter and an adjustment of the feedback resistor value.

References

  1. D. Huber, M. Bitter, E. Gini, A. Neiger, T. Morf, C. Bergamaschi and H. Jäckel, "50 GHz monolithically integrated InP/InGaAs PIN/HBT-receiver", in Proc. 11th Conf. Indium Phosphide and Related Mater., May 1999, pp.  6-7. 
  2. D. Huber, M. Bitter, T. Morf, C. Bergamaschi, H. Melchior and H. Jäckel, "46 GHz bandwidth monolithic InP/InGaAs PIN/SHBT photoreceiver", Electron. Lett., vol. 35, no.  1, pp.  40-41, Jan.  1999.
  3. D. Huber, M. Bitter, S. Romier, I. Schnyder, R. Bauknecht, T. Morf, C. Bergamaschi and H. Jäckel, "23 GHz monolithically integrated InP/InGaAs PIN/HBT-receiver with 12 THz gain-bandwidth product", in Proc. 10th Conf. Indium Phosphide and Related Mater. , May 1998, pp.  447-450. 
  4. M. Bitter, R. Bauknecht, W. Hunziker and H. Melchior, "Monolithically integrated 40-Gb/s InP/InGaAs PIN/HBT optical receiver module", in Proc. 11th Conf. Indium Phosphide and Related Mater., May 1999, pp.  381- 384. 
  5. U. Westergren, D. Haga and B. Willen, "Monolithic optoelectronic receivers with up to 24 GHz bandwidth using InP pin-HBT technology", in Proc. 23th Eur. Conf. Optical Commun., vol. 4, Sept. 1997, pp.  105-108. 
  6. E. Sano, M. Yoneyama, S. Yamahata and Y. Matsuoka, "InP/InGaAs double-heterojunction bipolar transistors for high-speed optical receivers", IEEE Trans. Electron Devices, vol. 43, pp.  1826-1832, Nov.  1996.
  7. A. Huber, D. Huber, T. Morf, C. Bergamaschi, V. Hurm, M. Ludwig, M. Schlechtweg and H. Jäckel, "Monolithic high transimpedance gain (3.3 k ), 40 Gb/s InP-HBT photoreceiver with differential outputs", Electron. Lett., vol. 35, no. 11, pp.  897-898, May  1999.
  8. L. M. Lunardi, S. Chandrasekhar, A. H. Gnauck, C. A. Burrus and R. A. Hamm, "20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55-µ m applications", IEEE Photon. Technol. Lett., vol. 7, pp.  1201-1203, Oct.  1995 .
  9. S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, R. A. Hamm and G. J. Qua, "High-speed monolithic p-i-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure", IEEE Photon. Technol. Lett., vol. 5, pp.  1316-1318, Nov.  1993 .
  10. E. Sano, K. Sano, T. Otsuji, K. Kurishima and S. Yamahata, "Ultra-high speed, low power monolithic photoreceiver using InP/InGaAs doule-heterojunction bipolar transistors", Electron. Lett., vol. 33, no. 12, pp.  1047-1048, June  1997.
  11. K. Takahata, Y. Muramoto, H. Fukano and Y. Matsuoka, "52 GHz bandwidth monolithically integrated WGPD/HEMT photoreceiver with large O/E conversion factor of 105 V/W", Electron. Lett., vol. 35, no. 19, pp.  1639-1640, Sept.  1999.
  12. K. Takahata, Y. Muramoto, H. Fukano, K. Kato, A. Kozen, O. Nakajima and Y. Matsuoka, "46.5-GHz-bandwidth monolithic receiver OEIC consisting of a waveguide PIN photodiode and a HEMT distributed amplifier", IEEE Photon. Technol. Lett., vol. 10, pp.  1150 -1152, Aug.  1998.
  13. Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato and H. Tsunetsugu, "40 GB/s optical receiver module using a flip-chip bonding technique for device interconnection", Electron. Lett., vol. 34, no. 5, pp.  493-494, Mar.  1998.
  14. V. Hurm, W. Benz, W. Bronner, A Hülsmann, T. Jakobus, K. Köhler, A. Leven, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg and A. Thiede, "40 Gb/s 1.55 µ m pin-HEMT photoreceiver monolithically integrated on 3 in GaAs substrate", Electron. Lett., vol. 34, no. 21, pp.  2060-2062, Oct.  1998.
  15. G. Mekonnen, W. Schlaak, H.-G. Bach, R. Steingrüber, A. Seeger, Th. Engel, W. Passenberg, A. Umbach, C. Schramm, G. Unberbösch and S. van Waasen, "37-GHz bandwidth InP-based photoreceiver OEIC suitable for data rates up to 50 Gb/s", IEEE Photon. Technol. Lett., vol. 11, pp.  257-259, Feb.  1999.
  16. B. Klepser, J. Spicher, C. Bergamaschi, W. Patrick and W. Bächtold, "High speed, monolithically integrated pin-HEMT photoreceiver fabricated on InP with a tunable bandwidth up to 22 GHz using a novel circuit design", in Proc. 8th Conf. Indium Phosphide and Related Mater., May 1996, pp.  443- 446. 
  17. P. Fay, I. Adesida, C. Caneau and S. Chandrasekhar, "High sensitivity monolithically integrated PIN-HEMT photoreceivers", in Proc. 10th Conf. Indium Phosphide and Related Mater. , May 1998, pp.  439-442. 
  18. Z. Lao, V. Hurm, A. Thiede, M. Berroth, M. Ludwig, H. Lienhart, M. Schlechtweg, J. Hornung, W. Bronner, K. Köhler, A. Hülsmann, G. Kaufel and Th. Jakobus, "Modulator driver and photoreceiver for 20 Gb/s optic-fiber links", J. Lightwave Technol., vol. 16, pp.  1491-1497, Aug.  1998.
  19. V. Hurm, W. Benz, W. Bronner, T. Fink, G. Kaufel, K. Köhler, Z. Lao, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg and J. Windscheif, "20 Gb/s long wavelength monolithic integrated photoreceiver grown on GaAs", Electron. Lett., vol. 33, no.  7, pp.  624-626, Mar.  1997.
  20. B. Agarwal, A. E. Schmitz, J. J. Brown, M. Matloubian, M. G. Case, M. Le, M. Lui and M. J. W. Rodwell, "112 GHz, 157 GHz and 180 GHz InP HEMT traveling-wave amplifiers", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2553-2559, Dec.  1998.
  21. R. Bauknecht, "InP double heterojunction bipolar transistors for driver circuits in fiber optical communication systems", Ph.D. dissertation ETH Nr. 12 455, Dec. 1997.
  22. S. Yamahata, K. Kurishima, H. Ito and Y. Matsuoka, "Over-220-GHz-fT -and-fmax InP/InGaAs double-heterojunction bipolar transistors with a new hexagonal-shaped emitter", in Proc. GaAs IC Symp., 1995, pp.  163-165. 
  23. Q. Lee, B. Agarwal, D. Mensa, R. Pulela, J. Guthrie, L. Samoka and M. J. W. Rodwell, "A > 400 GHz fmax transferred-substrate heterojunction bipolar transistor IC technology", IEEE Electron Device Lett., vol. 19, pp.  77-79, Mar.  1998.
  24. L. G. Shantarama2, H. Schuhmacher, H. P. Leblanc, R. Esagui, R. Bhat and M. Koza, "Evaluation of single ohmic metallizations for contacting both p-and n-type GaInAs", Electron. Lett., vol. 26, no.  15, pp.  1127-1129, July  1990.
  25. G. Lucovsky, R. Schwarz and R. Emmons, "Transit time considerations in pin-diodes", J. Appl. Phys., vol. 35, no. 3, pp.  622-627, Mar.  1964.
  26. D. E. Sawyer and R. H. Rediker, "Narrow basew Germanium photodiodes", Proc. IRE, vol. 46, no. 6, pp.  1122-1130, June   1958.
  27. P. A. Schulz and K. L. Hall, "Impulse response measurements with 50-GHz bandwidth", IEEE Microwave Guided Wave Lett., vol. 9, pp.  120-122, Mar.  1999.
  28. T. Vanisri and C. Toumazou, "Integrated high frequency low noise current-mode optical transimpedance preamplifiers", IEEE J. Solid State Circuits, vol. 30, pp.  677-685, June  1995.
  29. G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 1997, pp.  165-166.