2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Complex Propagators for Evanescent Waves in Bidirectional Beam Propagation Method

Hongling Rao, M. J. Steel, Rob Scarmozzino, Member, IEEE and Richard M. Osgood Jr. Fellow, IEEE

Page 1155.

Abstract:

Existing algorithms for bidirectional optical beam propagation proposed to simulate reflective integrated photonic devices do not propagate evanescent fields correctly. Thus inaccuracy and instability problems can arise when fields have significant evanescent character. We propose complex representations of the propagation operator by choosing either a complex reference wave number or a complex representation of Padé approximation to address this issue. Therefore correct evolution of both propagating waves and evanescent waves can be simultaneously realized, significantly reducing the inaccuracy and instability problems. Both test problems and practical problems are presented for demonstration.

References

  1. D. Yevick and B. Hermansson, "Efficient beam propagation techniques", IEEE J. Quantum Electron., vol. 26, pp.  109-112, 1990.
  2. Y. Chung and N. Dagli, "An assessment of finite difference beam propagation methods", IEEE J. Quantum Electron., vol. 26, pp.  1335 -1339, 1990.
  3. R. Scarmozzino and R. M. Osgood Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics problems", J. Opt. Soc. Amer. A, vol. 8, pp.  724-729, 1991.
  4. W. P. Huang, S. T. Chu, A. Goss and S. K. Chaudhuri, "A scalar finite-difference time-domain approach to guided-wave optics", IEEE Photon. Technol. Lett., vol. 3, pp.  524-526, 1991.
  5. P. Kaczmarski and P. E. Lagasse, "Bidirectional beam propagation method", Electron. Lett., vol. 24, pp.  675-676, 1988.
  6. Y. Chiou and H. Chang, "Analysis of optical waveguide discontinuities using the padé approximants", IEEE Photon. Technol. Lett., vol. 9, pp.  964-966, 1997.
  7. C. Yu and D. Yevick, "Application of the bidirectional parabolic equation method to optical waveguide facets", J. Opt. Soc. Amer. A, vol. 14, pp.  1448-1450, 1997.
  8. H. Rao, R. Scarmozzino and R. M. Osgood Jr., "A bidirectional beam propagation method for multiple dielectric interfaces", IEEE Photon. Technol. Lett., vol. 7, pp.  830-832, 1999.
  9. Y. Chung and N. Dagli, "Modeling of guided-wave optical components with efficient finite-difference beam propagation methods", Proc. IEEE Antennas Propagat. Soc. Int. Symp., 1992 Dig., vol. 1, pp.  248-251, 1992.
  10. H. E. Hernández-Figueroa, "Simple Nonparaxial Beam-Propagation Scheme for Integrated Optics", J. Lightwave Technol., vol. 12, pp.  644-649, 1994.
  11. H.-C. Chang, "Department of Electrical Engineering and Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei 106-17, Taiwan, China,1997, Private communication",
  12. M. D. Collins, "Higher-order padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation", J. Acoust. Soc. Amer., vol. 89, pp.  1050-1057, 1991.
  13. M. D. Collins, "A two-way parabolic equation for elastic media", J. Acoust. Soc. Amer., vol. 93, pp.  1815-1825, 1993.
  14. H. El-Refaei, D. Yevick and I. Betty, "Padé approximation analysis of reflection at optical waveguide facets", Proc. 1999 Tech. Dig., Integr. Photon. Res., pp.  104-106, 1999.
  15. F. A. Milinazzo, C. A. Zala and G. H. Brooke, "Rational square-root approximations for parabolic equation algorithms", J. Acoust. Soc. Amer., vol. 101, pp.  760-766, 1997.
  16. W. Yang and A. Gopinath, "A boundary integral method for propagation problems in integrated optical structures", IEEE Photon. Technol. Lett., vol. 7, pp.  777-779, 1995.