2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

WKB Analysis of Bend Losses in Optical Waveguides

William Berglund and Anand Gopinath

Page 1161.

Abstract:

A more complete Wentzel-Kramers-Brillouin (WKB) analysis of bend losses is given for a circularly curved waveguide. Using the WKB approximation with a conformal transformation of a curved optical waveguide, is shown to give more accurate bend loss results.

References

  1. M. Heiblum and J. H. Harris, "Analysis of curved waveguides by conformal transformation", IEEE J. Quantum Electron., vol. QE-11, pp.  75-83,  1975.
  2. J. Janta and J. Ctyroky, "On the accuracy of WKB analysis of TE and TM modes in planar graded-index waveguides", Opt. Commun., vol. 25, pp.  49-52, 1978 .
  3. A. Gedeon, "Comparison between rigorous theory and WKB-analysis of modes in graded-index waveguides", Opt. Commun., vol. 12, pp.  329-332,  1974.
  4. J. Gu, P. Besse and H. Melchior, "Novel method for analysis of curved optical rib-waveguides", Electron. Lett., vol. 25, pp.  278-280, 1989.
  5. T. Yamamoto and M. Koshiba, "Numerical analysis of curvature loss in optical waveguides by finite-element method", J. Lightwave Technol., vol. 11, pp.  1579-1583, 1993.
  6. S. Kim and A. Gopinath, "Vector analysis of optical dielectric waveguide bends using finite-difference method", J. Lightwave Technol., vol. 14, pp.  2085-2092, 
  7. K. Thyagarajan, M. R. Shenoy and A. K. Ghatak, "Accurate numerical method for the calculation of bending loss in optical waveguide using a matrix approach", Opt. Lett., vol. 12, pp.  296-298, 1987.
  8. D. Rowland, "Nonperturbative calculation of bend loss for a pulse in a bent planar waveguide", Inst. Elec. Eng. Proc.-Optoelectron. , vol. 144, pp.  91-96, 1997.
  9. E. A. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics", Bell Syst. Tech. J., vol. 48, pp.  2071-2102, 1969.
  10. R. Wu and C. H. Chen, "A scalar variational conformal mapping technique for weakly guiding dielectric waveguides", IEEE J. Quantum Electron., vol. Qe-22, pp.  603-609, 1986.
  11. D. Bohm, Quantum Theory, Englewood Cliffs, NJ: Prentice-Hall, 1951, ch. 12.
  12. R. Deri, E. Kapon and L. Schiavone, "Bend losses in GaAs/AlGaAs optical waveguides", Electron. Lett., vol. 23, pp.  845-847, 1987.