2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Higher Order Error of Discrete Fiber Model and Asymptotic Bound on Multistaged PMD Compensation

Yi Li, Avishay Eyal, Associate Member, IEEE and Amnon Yariv Life Fellow, IEEE

Page 1205.

Abstract:

In this paper, we develop a random-matrix formalism that enables analysis of a variety of polarization-mode dispersion (PMD) related problems. In particular, we address the problems of higher order error in a discrete fiber model and limit of multistaged PMD compensation schemes. Our solution to the first problem leads to a simple condition for the validity of the model,which is often overlooked in PMD simulations. For the second issue, we have found an asymptotic bound on the limit of a multistaged PMD compensation scheme. The theory is confirmed by numerical simulations, and future work is suggested.

References

  1. G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers", J. Lightwave Technol., vol. 9, pp.  1439-1456, Nov.  1991.
  2. N. Gisin, "Solutions of the dynamical equation for polarization dispersion", Opt. Commun., vol. 86, pp.  371-373, 1991.
  3. P. K. A. Wai and C. R. Menyuk, "Polarization decorrelation in optical fibers with randomly varying birefringence", Opt. Lett., vol. 19, pp.  1517-1519,  1994.
  4. P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation,and diffusion in optical fibers with randomly varying birefringence", J. Lightwave Technol., vol. 14, pp.  148-157, Feb.  1996.
  5. P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto and C. W. Zimmer, "Second order polarization mode dispersion: Impact on analog and digital transmissions", J. Lightwave Technol., vol. 16, pp.  757-771, May  1998.
  6. L. Arnold, Stochastic Differential Equations: Theory and Applications, New York: Wiley, 1974.
  7. W. Horsthemke and R. Lefever, Noise Induced Transitions, Berlin: Germany: Springer, 1984.
  8. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, New York: Springer, 1998.
  9. H. J. Carmichael, Statistical Methods in Quantum Optics, New York: Springer, 1999.
  10. Y. Li and A. Yariv, "Solutions of the dynamical equation for polarization-mode dispersion in presence of polarization-dependent losses", J. Opt. Soc. Amer. B.,
  11. N. Gisin and J. P. Pellaux, "Polarization mode dispersion: Time versis frequency domains", Opt. Commun., vol. 89, pp.  316 -323, 1992.
  12. F. Corsi, A. Galtarossa and L. Palmieri, "Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique", J. Lightwave Technol., vol. 16, pp.  1832-1843, Oct.  1998.
  13. M. Karlsson and J. Brentel, "Autocorrelation function of the polarization-mode dispersion vector", Opt. Lett., vol. 24, no. 14, pp.  939-941, 1999 .
  14. C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer", J. Lightwave Technol., vol. 12, pp.  917-929, June  1994.
  15. R. C. Jones, "A new calculus for the treatment of optical systems (i)", J. Opt. Soc. Amer., vol. 31, pp.  488-493, 1941.
  16. A. Eyal, W. K. Marshall, M. Tur and A. Yariv, "A new representation of second order polarization mode dispersion", Electron. Lett., vol. 35, no. 19, pp.  1658-1659, 1999.
  17. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, C. Glingener, C. Scheerer, A. Schöpflin and G. Fischer, "Polarization mode dispersion compensation at 20 gbit/s with fiber-based distributed equaliser", Electron. Lett., vol. 34, no.  25, pp.  2421-2422, 1998.
  18. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch and W. Haase, "Polarization mode dispersion compensation at 10, 20 and 40 gb/s with various optical equalizers", J. Lightwave Technol., vol. 17, pp.  1602-1616, Sept.  1999.
  19. T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY: Wiley, 1991.
  20. N. J. Frigo, "A generalized geometrical representation of coupled mode theory", IEEE J. Quantum Electron., vol. 22, no.  11, pp.  2131-2140, 1986.
  21. C. D. Poole, N. S. Bergano, R. E. Wagner and H. J. Schulte, "Polarization dispersion and principal states in a 147 km undersea lightwave cable", J. Lightwave Technol., vol. 6, pp.  1185-1190, July  1988.
  22. D. Andresciani, F. Curti, F. Matera and B. Daino, "Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable", Opt. Lett., vol. 12, no. 10, pp.  844-846, 1987.