2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 9, September 2000
Table of Contents for this issue
Complete paper in PDF format
Higher Order Error of Discrete
Fiber Model and Asymptotic Bound on Multistaged PMD Compensation
Yi Li, Avishay Eyal, Associate Member, IEEE and Amnon Yariv Life Fellow, IEEE
Page 1205.
Abstract:
In this paper, we develop a random-matrix formalism that enables
analysis of a variety of polarization-mode dispersion (PMD) related problems.
In particular, we address the problems of higher order error in a discrete
fiber model and limit of multistaged PMD compensation schemes. Our solution
to the first problem leads to a simple condition for the validity of the model,which is often overlooked in PMD simulations. For the second issue, we have
found an asymptotic bound on the limit of a multistaged PMD compensation scheme.
The theory is confirmed by numerical simulations, and future work is suggested.
References
-
G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers", J. Lightwave Technol., vol. 9, pp. 1439-1456, Nov. 1991.
-
N. Gisin, "Solutions of the dynamical equation for polarization dispersion", Opt. Commun., vol. 86, pp. 371-373, 1991.
-
P. K. A. Wai and C. R. Menyuk, "Polarization decorrelation in optical fibers with randomly varying birefringence", Opt. Lett., vol. 19, pp. 1517-1519,
1994.
-
P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation,and diffusion in optical fibers with randomly varying birefringence", J. Lightwave
Technol., vol. 14, pp. 148-157, Feb. 1996.
-
P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto and C. W. Zimmer, "Second order polarization mode dispersion: Impact on analog and digital transmissions", J. Lightwave Technol., vol. 16, pp. 757-771, May 1998.
-
L. Arnold,
Stochastic Differential Equations: Theory and Applications, New York: Wiley, 1974.
-
W. Horsthemke and R. Lefever, Noise Induced Transitions,
Berlin: Germany: Springer, 1984.
-
B. Øksendal, Stochastic Differential Equations: An
Introduction with Applications,
New York: Springer, 1998.
-
H. J. Carmichael, Statistical Methods in Quantum Optics, New York: Springer, 1999.
-
Y. Li and A. Yariv, "Solutions of the dynamical equation for polarization-mode dispersion in presence of polarization-dependent losses", J. Opt.
Soc. Amer. B.,
-
N. Gisin and J. P. Pellaux, "Polarization mode dispersion: Time versis frequency domains", Opt. Commun., vol. 89, pp. 316
-323, 1992.
-
F. Corsi, A. Galtarossa and L. Palmieri, "Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique", J. Lightwave
Technol., vol. 16, pp. 1832-1843, Oct. 1998.
-
M. Karlsson and J. Brentel, "Autocorrelation function of the polarization-mode dispersion vector", Opt. Lett., vol. 24, no. 14, pp. 939-941, 1999
.
-
C. D. Poole and D. L. Favin, "Polarization-mode dispersion measurements based on transmission spectra through a polarizer", J. Lightwave Technol., vol. 12, pp. 917-929, June 1994.
-
R. C. Jones, "A new calculus for the treatment of optical systems (i)", J. Opt. Soc. Amer., vol. 31, pp. 488-493, 1941.
-
A. Eyal, W. K. Marshall, M. Tur and A. Yariv, "A new representation of second order polarization mode dispersion", Electron. Lett., vol. 35, no. 19, pp.
1658-1659, 1999.
-
R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, C. Glingener, C. Scheerer, A. Schöpflin and G. Fischer, "Polarization mode dispersion compensation at 20 gbit/s with fiber-based distributed equaliser", Electron. Lett., vol. 34, no.
25, pp. 2421-2422, 1998.
-
R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch and W. Haase, "Polarization mode dispersion compensation at 10, 20 and 40 gb/s with various optical equalizers", J. Lightwave Technol., vol. 17, pp. 1602-1616, Sept. 1999.
-
T. M. Cover and J. A. Thomas, Elements of Information Theory,
New York, NY: Wiley, 1991.
-
N. J. Frigo, "A generalized geometrical representation of coupled mode theory", IEEE J. Quantum Electron., vol. 22, no.
11, pp. 2131-2140, 1986.
-
C. D. Poole, N. S. Bergano, R. E. Wagner and H. J. Schulte, "Polarization dispersion and principal states in a 147 km undersea lightwave cable", J. Lightwave Technol., vol. 6, pp. 1185-1190, July 1988.
-
D. Andresciani, F. Curti, F. Matera and B. Daino, "Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable", Opt. Lett., vol. 12, no. 10, pp. 844-846, 1987.