2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

A Versatile Method for Analyzing Paraxial Optical Propagation in Dielectric Structures

Federica Causa and J. Sarma

Page 1445.

Abstract:

This paper presents a fast and accurate quasi-analytic model for studying optical field propagation in weakly guiding dielectric structures. The proposed efficient and versatile computational scheme is obtained by merging the Hermite-Gauss (HG) total field expansion with the numerical collocation method and is particularly suited for longitudinally nonuniform structures. By means of a quasilinearization scheme, the same procedure has also been successfully applied to the analysis of field propagation in Kerr-nonlinear media. The latter achievement gives an indication of the great potentialities offered by this straightforward method. Several examples are discussed in the paper and in all cases the results computed by the proposed method favorably compare with those from alternative methods.

References

  1. S. M. Saad, "Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides", IEEE Trans. Microwave Theory Technol., vol. MTT-33, pp.  894-899, Oct.  1985.
  2. K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general dielectric waveguides", Optic. Quantum Electron., vol. 26, pp.  S113-S134, Nov.  1994.
  3. D. Marcuse, Light Transmission Optics, New York: Van Nostrand Reinhold, 1982.
  4. C. H. Henry and Y. Shami, "Analysis of mode propagation in optical waveguide devices by Fourier expansion", IEEE J. Quantum Electron., vol. 27, pp.  523-530, 1991.
  5. A. Sharma and S. Banerjee, "Method for propagation of total fields or beams through optical waveguides", Opt. Lett., vol. 14, pp.  96-98,  Jan.  1989.
  6. F. Causa, J. Sarma and M. Milani, "Hermite-Gauss functions in the analysis of a category of optical devices", Nuovo Cimento della Societa' Italiana di Fisica D, vol. 20, no. 3, pp.  289-320, Mar.   1998.
  7. A. E. Siegman, Lasers,: University Science Books, 1986.
  8. H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1984.
  9. T. Rozzi and M. Mongiardo, Open Dielectric Waveguides,: IEE Electromagnetic Wave Series, 1997.
  10. E. Butkov, Mathematical Physics, Reading,MA: Addison-Wesley, 1973.
  11. P. Gerard, P. Benech, H. Ding and R. Rimet, "A simple method for the determination of orthogonal radiation modes in planar multilayer structures", Opt. Commun., vol. 108, pp.  235-238, June  1994.
  12. R. L. Gallawa, I. C. Goyal, Y. Tu and A. K. Ghatak, "Optical waveguide modes: An approximate solution using Galerkin's method with Hermite-Gauss basis functions", IEEE J. Quantum Electron., vol. 27, pp.  518-522, 1991.
  13. O. Georg, "Use of the orthogonal system of Laguerre-Gaussian functions in the theory of circularly symmetric optical waveguides", Appl. Opt., vol. 21, pp.  141-146, Jan.  1982.
  14. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1965.
  15. B. A. Finlayson, The Method of Weighted Residuals and Variational Principles (with Applications in Fluid Mechanics, Heat and Mass Transfer), New York: Academic, 1972.
  16. A. Sharma, "Collocation method for wave propagation through optical waveguiding structures,"in Progress in Electromagnetics Research, Electromagnetic Waves PIER 11, J. A. Kong, Ed. New York: EMW, 1995.
  17. M. Reed, P. Sewell, T. M. Benson and P. C. Kendall, "Efficient propagation algorithm for 3D optical waveguides", Inst. Elect. Eng. Proc.-Optoelectron., vol. 145, no.  1, pp.  53-58, Feb.  1998.
  18. R. E. Collin and F. J. Zucker, Antenna Theory, New York: McGraw Hill, 1969.
  19. A. F. Milton and W. K. Burns, "Mode coupling in optical waveguide horns", IEEE J. Quantum Electron., vol. QE-13, pp.  828-835, Oct.  1977 .
  20. J. N. Walpole, "Semiconductor amplifiers and lasers with tapered gain regions", Optic. Quantum Electron., vol. 28, pp.  623-645, June  1996 .
  21. S. Obrien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts and D. Scifres, "Operating characteristics of a high-power monolithically integratedflared amplifier master oscillator power-amplifier", IEEE J. Quantum Electron. , vol. 29, pp.  2052-2057, 1993.
  22. K. A. Williams, J. Sarma, I. H. White, R. V. Penty, I. Middlemast, T. Ryan, F. R. Laughton and J. S. Roberts, "Q -switched bow-tie lasers for high-energy picosecond pulse generation", Electron. Lett., vol. 30, pp.  320-321, Feb.  1994.
  23. C. Dragone, "Optimum design of a planar array of tapered waveguides", J. Opt. Soc. Amer. A, vol. 7, pp.  2081-2093, Nov.  1990 .
  24. N. S. Brooks, J. Sarma and I. Middlemast, "A new design for tapered-geometry high-power semiconductor optical sources", in Proc. LEOS'96, Nov. 1996.
  25. I. Middlemast, J. Sarma and P. S. Spencer, "Characteristics of tapered rib-waveguides for high-power semiconductor optical sources", Inst. Elect. Eng. Proc.-Optoelectron. , vol. 144, pp.  8-13, July  1997.
  26. T. Rozzi and L. Zappelli, "Modal analysis of nonlinear propagation in dielectric slab waveguide", J. Lightwave Technol., vol. 14, pp.  229-235, Feb.  1996.
  27. P. M. Lambkin and K. A. Shore, "Asymmetric semiconductor waveguide with defocusing nonlinearity", IEEE J. Quantum Electron., vol. 24, pp.  2046-2051, Oct.  1988.
  28. P. R. Berger, P. K. Bhattacharya and S. Gupta, "A waveguide directional coupler with a nonlinear coupling medium", IEEE J. Quantum Electron., vol. 27, pp.  788-795, Mar.  1991.
  29. T. Yasui, M. Koshiba and Y. Tsuji, "A wide-angle finite element beam propagation method with perfectly matched layers for nonlinear optical waveguides", J. Lightwave Technol., vol. 17, no. 10, pp.  1909-1915, Oct.  1999.
  30. F. Causa, J. Sarma and R. Balasubramanyam, "A new method for computing nonlinear carrier diffusion in semiconductor optical devices", IEEE Trans. Electron Devices, vol. 46, pp.  1135-1139, June  1999.