2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Journal of Lightwave Technology
Volume 18 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Evaluating the Error Probability in Lightwave Systems with Chromatic Dispersion, Arbitrary Pulse Shape and Pre-and Postdetection Filtering

Enrico Forestieri Member, IEEE

Page 1493.

Abstract:

A novel approach to analytically evaluate the bit error probability in optically preamplified direct-detection systems is presented, which can take into account the effects of pulse shaping, chirping, filtering at the transmitter and the receiver, both pre-and postdetection, chromatic dispersion,and ASE noise. The method is computationally very fast in that the saddle point integration method for solving the resulting line integral of a particular moment generating function is adopted. A closed-form approximation for the bit error probability is also provided, which is within 0.01 dB from the exact numerical results.

References

  1. P. S. Henry, "Error-rate performance of optical amplifiers", in Tech. Dig. OFC'89, Houston, TX, Feb. 1989,Paper THK3.
  2. D. Marcuse, "Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers", J. Lightwave Technol., vol. 8, no. 12, pp.  1816-1823, Dec.  1990.
  3. O. K. Tonguz and L. G. Kazovsky, "Theory of direct-detection lightwave receivers using optical amplifiers", J. Lightwave Technol., vol. 9, pp.  174-181, Feb.  1991.
  4. D. Marcuse, "Calculation of bit-error probability for a lightwave system with optical amplifiers and post-detection Gaussian noise", J. Lightwave Technol., vol. 9, pp.  505-513, Apr.  1991.
  5. P. A. Humblet and M. Azizog˜lu, "On the bit error rate of lightwave systems with optical amplifiers", J. Lightwave Technol., vol. 9, pp.  1576-1582, Nov.  1991.
  6. J.-S. Lee and C.-S. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain", J. Lightwave Technol., vol. 12, pp.  1224-1229, July  1994 .
  7. N. G. Jensen, E. Bodtker, G. Jacobsen and J. Strandberg, "Performance of preamplified direct detection systems under influence of receiver noise", IEEE Photon. Technol. Lett., vol. 6, pp.  1488-1490, Dec.  1994.
  8. L. F. B. Ribeiro, J. R. F. Da Rocha and J. L. Pinto, "Performance evaluation of EDFA preamplified receivers taking into account intersymbol interference", J. Lightwave Technol. , vol. 13, pp.  225-232, Feb.  1995.
  9. S. L. Danielsen, B. Mikkelesen, T. Durhuus, C. Joergensen and K. E. Stubkjaer, "Detailed noise statistics for an optically preamplified direct detection receiver", J. Lightwave Technol. , vol. 13, pp.  977-981, May  1995.
  10. C. Lawetz and J. C. Cartledge, "Performance of optically preamplified receivers with Fabry-Perot optical filters", J. Lightwave Technol., vol. 14, pp.  2467-2474, Nov.  1996.
  11. I. T. Monroy and G. Einarsson, "Bit error evaluation of optically preamplified direct detection receivers with Fabry-Perot optical filters", J. Lightwave Technol., vol. 15, pp.  1546-1553, Aug.  1997 .
  12. C. W. Helstrom, "Distribution of the filtered output of a quadratic rectifier computed by numerical contour integration", IEEE Trans. Inform. Theory, vol. IT-32, pp.  450-463, July  1986.
  13. H. Meyr, M. Moeneclaey and S. A. Fechtel, Digital Communication Receivers, New York: Wiley, 1998.
  14. G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 1989.
  15. S. W. Golomb, Shift Register Sequences, San Francisco, CA: Holden-Day, 1967.
  16. H. Van Trees, Detection, Estimation, and Modulation Theory, Part I, New York: Wiley, 1968.
  17. J. G. Proakis, Digital Communications, New York: McGraw-Hill, 1983.
  18. C. W. Helstrom and J. A. Ritcey, "Evaluating radar detection probabilities by steepest descent integration", IEEE Trans. Aerospace Electron. Syst. , vol. 20, pp.  624-634, Sept.  1984.
  19. C. W. Helstrom, Statistical Theory of Signal Detection, Elmsford, NY: Pergamon, 1968.
  20. S. Benedetto, E. Biglieri and V. Castellani, Digital Transmission Theory, London: U.K.: Prentice-Hall, 1987.
  21. A. F. Elrefaie, R. E. Wagner, D. A. Atlas and D. G. Daut, "Chromatic dispersion limitations in coherent lightwave transmission systems", J. Lightwave Technol., vol. 6, pp.  704-709, May  1988.
  22. L. J. Cimini, L. J. Greenstein and A. A. M. Saleh, "Optical equalization to combat the effects of laser chirp and fiber dispersion", J. Lightwave Technol., vol. 8, pp.  649-659, May  1990.
  23. F. Bruyère, "Impact of first-and second-order PMD in optical digital transmission systems", Optical Fiber Technol., no. 2, pp.  269-280, 1996.
  24. K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver", J. Lightwave Technol. , vol. 15, pp.  1530-1537, Aug.  1997.
  25. K. Hinton, "Dispersion compensation using apodized Bragg fiber gratings in transmission", J. Lightwave Technol., vol. 16, pp.  2336-2346, Dec.  1998.
  26. S. D. Personick, "Receiver design for digital fiber optic communication systems, I", Bell Syst. Tech. J., vol. 52, no. 6, pp.  843-874, July  1973.
  27. S. Perlins, Theory of Matrices, New York: Dover, 1991.
  28. C. Schwartz, "Numerical integration of analytic functions", J. Computat. Phys., vol. 4, pp.  19-29, 1969.
  29. S. O. Rice, "Efficient evaluation of integrals of analytic functions by the trapezoidal rule", Bell Syst. Tech. J., vol. 52, pp.  707-722, May-June  1973.