2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Journal of Lightwave Technology
Volume 18 Number 11, November 2000
Table of Contents for this issue
Complete paper in PDF format
Monolithically Integrated
Multichannel SiGe/Si p-i-n-HBT Photoreceiver Arrays
Omar Qasaimeh, Zhenqiang Ma, Student Member, IEEE Pallab Bhattacharya, Fellow, IEEE and Edward T. Croke
Page 1548.
Abstract:
A low-power, short-wavelength eight-channel monolithically integrated
photoreceiver array, based on SiGe/Si heterojunction bipolar transistors,is demonstrated. The photoreceiver consists of a photodiode, three-stage transimpedance
amplifier, and passive elements for feedback, biasing and impedance matching.
The photodiode and transistors are grown by molecular beam epitaxy in a single
step. The p-i-n photodiode exhibits a responsivity of 0.3A/W and a bandwidth
of 0.8 GHz at
= 0.88 µm. The three-stage
transimpedance amplifier demonstrates a transimpedance gain of 43 dB
and a -3 dB
bandwidth of 5.5 GHz. A single channel monolithically integrated photoreceiver
consumes a power of 6 mW and demonstrates an optical bandwidth of 0.8 GHz.
Eight-channel photoreceiver arrays are designed for massively parallel applications
where low power dissipation and low crosstalk are required. The array is on
a 250-µm pitch and can be easily scaled
to much higher density. Large signal operation up to 1 Gb/s is achieved with
crosstalk less than -26 dB. A scheme for time-to-space
division multiplexing is proposed and demonstrated with the photoreceiver
array.
References
-
S. Subbanna, G. Freeman, D. Ahlgren, D. Greenberg, D. Harame, J. Dunn, D. Herman and B. Meyerson, "Integration and design issues in combining very-large-speed silicon-germanium bipolar transistors and ULSI CMOS for system-on-a-chip applications", in IEDM Tech. Dig., Washington, DC, Dec. 1999, pp. 845-847.
-
A. Schüppen, A. Gruhle, H. Kibbel, U. Erben and U. König, "SiGe-HBT's with high fT at moderate current densities", Electron. Lett., vol. 30, pp.
1187-1188, 1994.
-
G. Freeman, D. Ahlgren, D. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. Jeng, J. Johnson, K. Schonenberg, K. Stein, R. Volant and S. Subbanna, "0.18 µ m 90 GHz fT SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications", in IEDM Tech. Dig., Washington, DC, Dec. 1999, pp. 569-572.
-
A. Schüppen, U. Erben, A. Gruhle, H. Kibbel, H. Schumacher and U. König, "Enhanced SiGe heterojunction bipolar transistors with 160 GHz-fmax", in IEDM Tech. Dig., Washington, DC, Dec. 1995, pp. 743- 746.
-
K. Oda, E. Ohue, M. Tanabe, H. Shimamoto, T. Onai and K. Washio, "130 GHz-fT SiGe HBT Technology", in IEDM Tech. Dig., Washington, DC, Dec. 1997, pp. 791-794.
-
R. A. Soref, "Silicon-based optoelectronics", Proc. IEEE
, vol. 81, pp. 1687-1706, Dec. 1993.
-
S. Fujita, T. Suzaki, A. Matsuoka, S. Miyazaki, T. Torikai, T. Nakata and M. Shikada, "High sensitivity 5 Gbit/s optical receiver module using Si IC and GaInAs APD", Electron. Lett., vol. 26, pp. 175-176,
1990.
-
H. Hamano, T. Yamamoto, Y. Nishizawa, Y. Oikawa, H. Kuwatsuka, A. Tahara, K. Suzuki and A. Nishimura, "10 Gbit/s optical front end using Si-bipolar preamplifier IC, flipchip APD and slant-end fiber", Electron. Lett., vol. 27, pp. 1602-1605, 1991.
-
Y. S. He, L. D. Garrett, K.-H. Lee and J. C. Campbell, "Monolithically integrated silicon nMOS pin photoreceiver", Electron. Lett., vol. 30, pp.
1887-1888, 1994.
-
M. Yamamoto, M. Kubo and K. Nakao, "Si-OEIC with a built-in pin-photodiode",
IEEE Trans. Electron. Devices, vol. 42, pp. 58-63, 1995.
-
M. Kyomasu, "Development of an integrated high speed silicon PIN photodiode sensor", IEEE Trans. Electron. Devices, vol. 42, pp. 1093-1099,
1995.
-
C. L. Schow, J. D. Schaub, R. Li, J. Qi and J. C. Campbell, "A monolithically integrated 1-Gb/s silicon photoreceiver", IEEE Photon. Tech. Lett., vol. 11, pp. 120-121,
1999.
-
Y. S. Tang, W.-X. Ni, C. M. Sotomayor Torres and G. V. Hansson, "Fabrication and characterization of Si-Si0.7Ge0.3 quantum dot light emitting diodes", Electron. Lett., vol. 31, pp. 1385-1386,
1995.
-
O. Qasaimeh, P. Bhattacharya and E. Croke, "SiGe-Si quantum-well electroabsorption modulators", IEEE Photon. Tech. Lett., vol. 10, pp. 807-809, 1998.
-
J. Rieh, D. Klotzkin, O. Qasaimeh, L. Lu, K. Yang, L. P. Katehi, P. Bhattacharya and E. Croke, "Monolithically integrated SiGe-Si PIN-HBT front-end photoreceivers", IEEE Photon. Tech. Lett., vol. 10, pp. 415-417, 1998.
-
A. L. Gutierrez-Aitken, P. Bhattacharya, K.-C. Syao, K. Yang, G. I. Haddad and X. Zhang, "Low crosstalk (< -40 dB) in 1.55 mm high-speed OEIC photoreceiver arrays with novel on-chip shielding", Electron. Lett., vol. 32, pp.
1706-1708, 1996.
-
E. Sano, M. Yoneyama, S. Yamahata and Y. Matsuoka, "23 GHz bandwidth monolithic photoreceiver compatible with InP/InGaAs double heterojunction bipolar transistor fabrication process", Electron. Lett., vol. 30, pp. 2064-2065, 1994.
-
L. Lunardi, S. Chandrasekhar, C. Burrus, R. Hamm, J. Sulhoff and J. Zyskind, "A 12-Gb/s high-performance, high-sensitivity monolithic p-i-n/HBT photoreceiver module for long-wavelength transmission systems", IEEE Photon. Technol. Lett., vol. 7, pp. 182
-184, 1995.
-
J. Rieh, L. Lu, L. P. B. Katehi, P. Bhattacharya, E. Croke, G. Ponchak and S. Alterovitz, "X-and Ku-Band amplifiers based on Si/SiGe HBT's and micromachined lumped components", IEEE Trans. Microwave
Theory Tech., vol. 45, pp. 685-694, 1998.