2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Efficient Computation of Double Series for the Planar Circuit Analysis via APA-E Algorithm

Xiaoping Yang and Zhengfan Li

Page 174.

Abstract:

A novel efficient numerical algorithm for computation of double series for the planar circuit analysis is proposed in this paper. The method is based on the abstract Pade approximate and extrapolation algorithm. In order to demonstrate its advantages, the classical multivariable rational Pade approximate is also constructed for comparison. It is shown by the calculation results that the method presented here can provide fast convergence and high accuracy, so it is much better than the classical Pade approximate and original analytical formula for computing planar circuit parameters with the summation of two-dimensional infinite modes.

References

  1. V. Fiumara, V. Galdi, V. Pierro and I. M. Pinto, "Efficient numerical analysis of arbitrary single-mode optical fibers using Pade approximants", IEEE Microwave Guided Wave Lett., vol. 8, no.  9, pp.  305-307, 1998.
  2. S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the pade approximant", IEEE Microwave Guided Wave Lett., vol. 8, no.  12, pp.  415-417, 1998.
  3. J. Zheng and Z. F. Li, "Accelerating capacitance computation for the interconnects in high speed MCM by Pade approximant", Electron. Lett., vol.  33, no. 3, Jan.  1997.
  4. A. Cuyt, Pade Approximants for Operator: Theory and Applications, A. Dold, and B. Eckmann, Eds. 1984, p.  1065. 
  5. X. Y. Xu, J. K. Li and G. L. Xu, The Introduction of Pade Approximant, Shanghai: China: P. R. Shanghai Science & Technique, 1990.
  6. J. S. R. Chisholm, "Rational approximants defined from double power series", Math. Computat., vol. 27, no.  124, pp.  841-848, 1973.
  7. G. T. Lei, R. W. Techentin and B. K. Gilbert, "High-frequency characterization of power/ground plane structures", IEEE Trans. Microwave Theory Tech., vol. 47, no. 5, pp.  562-569, 1999.
  8. R. H. Voelker, G. T. Lei, G. W. Pan and B. K. Gilbert, "Determination of complex permittivity of low-loss dielectrics", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1955-1960, Oct.  1997.