2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Microwave and Guided Wave Letters
Volume 10 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

An Optimized 25.5-76.5 GHz PHEMT-Based Coplanar Frequency Tripler

Y. Campos-Roca, L. Verweyen, M. Fernández-Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann and M. Schlechtweg

Page 242.

Abstract:

This letter presents an optimized single-stage MMIC tripler with W-band output frequency (76.5 GHz). The circuit is based on an 0.15 µm gate-length AlGaAs/InGaAs/GaAs PHEMT. By using a class AB transistor bias point and carefully selecting its input and output terminations, a high conversion gain of - 4.3 dB for an 8.5 dBm input signal and a saturated output power of 7 dBm have been obtained. To our knowledge, these results represent the best performance reported up to date for an active frequency tripler with W-band output frequency.

References

  1. J. Papapolymerou, F. Brauchler, J. East and L. P. B. Katehi, "W-band finite ground coplanar monolithic multipliers", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  614-619, 1999.
  2. Y. Campos-Roca, L. Verweyen, M. Neumann, M. Fernández-Barciela, C. Currás-Francos, E. Sánchez, A. Hülsmann and M. Schlechtweg, "Coplanar PHEMT MMIC frequency multipliers for 76-GHz automotive radar", IEEE Microwave Guided Wave Lett., vol. 9, pp.  242-244,  1999.
  3. A. Rahal, R. G. Bosisio, C. Rogers, J. Ovey, M. Sawan and M. Missous, "A W-band medium power multi-stack quantum barrier varactor frequency tripler", IEEE Microwave Guided Wave Lett., vol. 5, pp.  368-370, 1995.
  4. H. Fudem and E. C. Niehenke, "Novel millimeter wave active MMIC triplers", IEEE MTT-S Int. Microwave Symp., pp.  387-390, 1998.
  5. S. A. Maas, Nonlinear Microwave Circuits, Norwood, MA: Artech House, 1988.
  6. H. Statz, P. Newman, I. W. Smith, R. A. Pucel and H. A. Haus, "GaAs FET device and circuit simulation in SPICE", IEEE Trans. Electron Devices, vol. ED-34, pp.  160 -167, 1987.
  7. R. Osorio, M. Berroth, W. Marsetz, L. Verweyen, M. Demmler, H. Massler, M. Neumann and M. Schlechtweg, "Analytical charge conservative large signal model for MODFET's validated up to mm-wave ranges", IEEE MTT-S Int. Microwave Symp., pp.  595-598, 1998.
  8. D. L. Lê, F. M. Ghannouchi and R. G. Bosisio, "A novel approach for designing GaAs FET frequency multipliers with optimum conversion gain and power efficiency", Microwave Opt. Technol. Lett., vol. 5, pp.  403-408, 1992.
  9. G. Zhang, R. D. Pollard and C. M. Snowden, "A novel technique for HEMT tripler design", IEEE MTT-S Int. Microwave Symp., pp.  663-666, 1996.
  10. E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators, Norwood, MA: Artech House, 1998.
  11. M. Fernández-Barciela, P. J. Tasker, Y. Campos-Roca, M. Demmler, H. Massler, E. Sánchez, C. Currás-Francos and M. Schlechtweg, "A simplified broadband large-signal non quasistatic table-based FET model", IEEE Trans. Microwave Theory Tech., vol. 48, pp.  395- 405, 2000.