2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

A Compact Dual-Polarized 8.51-GHz Rectenna for High-Voltage (50 V) Actuator Applications

Larry W. Epp, Member, IEEE Abdur R. Khan, Hugh K. Smith and R. Peter Smith

Page 111.

Abstract:

This paper describes a dual-polarized rectenna capable of producing a 50-V output voltage that can be used for driving mechanical actuators. This study demonstrates a circuit topology that allows the output of multiple rectenna elements to be combined in order to step up the output voltage. In this paper, an independent rectifying circuit is used for each of two orthogonal polarizations. By proper combination, the output voltage is doubled over that of the single polarization case. Such panels are being explored for use on the next-generation space telescope to eliminate wiring between actuators and provide for true mechanical isolation.

References

  1. "JPL Task Plan", Jet Propulsion Lab., California Inst. Technol., Pasadena, CA, Tech Rep. 80-4734, 1998.
  2. W. C. Brown, " Design definition of a microwave power reception and conversion system for use on a high altitude powered platform", Raytheon Company , Wallops Flight Center, VA, NASA Rep. CR 156866, July 1980.
  3. W. C. Brown, "Rectenna technology program: Ultra light 2.45 GHz rectenna and 20 GHz rectenna", Raytheon Company, NASA Lewis Res. Center, OH, NASA Rep. CR 179558, 1987.
  4. T.-W. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35 GHz rectennas", IEEE Trans. Microwave Theory Tech., vol. 40 , pp.  1259- 1266, June  1992.
  5. M. Tran and C. Nguyen, "A new rectenna circuit using a bow-tie antenna for the conversion of microwave power to DC power", Microwave Opt. Technol. Lett., vol. 6, no. 11, pp.  655- 656, Sept.  5, 1993.
  6. J. O. McSpadden, "Theoretical and experimental study of 2.45 GHz rectifying antennas ", M.S. thesis, Dept. Elect. Eng., Texas A&M Univ., College Station, 1993.
  7. R. M. Dickinson, "Microwave transmission system for space power", Raumfahrtforschung, vol. Heft 5, pp.  238- 241, 1976.
  8. R. M. Dickinson, "Performance of a high-power, 2.38 GHz receiving array in wireless power transmission over 1.54 k", in IEEE MTT-S Int. Microwave Symp. Dig., 1976, pp.  139- 141. 
  9. A. Alden and T. Ohno, "Single foreplane high power rectenna", Electron. Lett., vol. 28, no. 11, pp.  1072- 1073, May  1992.
  10. P. Koert and J. T. Cha, "Millimeter wave technology for space power beaming ", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1251- 1258, June  1992.
  11. T. Ito, Y. Fujino and M. Fujita, "Fundamental experiment of a rectenna array for microwave power reception", IEICE Trans. Commun., vol. E76-B , no. 12, pp.  1508- 1513, Dec.  1993.
  12. J. O. McSpadden, T. Yoo and K. Chang, "Theoretical and experimental investigation of a rectenna element for microwave power transmission", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2359- 2366 , Dec.  1992.
  13. J.-F. Zürcher, "The SSFIP, a global concept for high performance broadband planar antennas", Electron. Lett., vol. 24, no.  23, pp.  1433- 1435, 1988.
  14. Y. Fujino, T. Ito, M. Fujita, N. Kaya, H. Matsumoto, K. Kawabata, H. Sawada, and T. Onodera, "A driving test of a small dc motor with a rectenna array", IEICE Trans. Commun, vol. E77-B , no. 4, pp.  526- 528, Apr.  1994.
  15. J. O. McSpadden and K. Chang, "A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection", in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp.  1749- 1752. 
  16. T. Yoo, J. O. McSpadden and K. Chang, "35 GHz rectenna implemented with a patch and a microstrip dipole antenna", in IEEE MTT-S Int. Microwave Symp. Dig. , 1992, pp.  345- 348. 
  17. D. M. Pozar, "Microstrip antenna aperture coupled to a microstripline ", Electron. Lett., vol. 21, no. 2, pp.  49- 50, Jan.   17, 1985.
  18. D. M. Pozar, "A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas", IEEE Trans. Antennas Propagat., vol. AP-34, no. 12, pp.  1439- 1446 , Dec.  1986.
  19. M. I. Aksum, S.-L. Chuang and Y. T. Lo, "On slot-coupled microstrip antennas and their application to CP operation-Theory and experiment", IEEE Trans. Antennas Propagat., vol. 38, pp.  1224- 1230, Aug.  1990.
  20. A. Ittipiboon, R. Oostlander, Y. M. M. Antar and M. Cuhaci, "A modal expansion method of analysis and measurement on aperture-coupled microstrip antenna", IEEE Trans. Antennas Propagat., vol. 39, pp.  1567- 1573 , Nov.  1991.
  21. E. Heidrich, F. Rostan and R. Zahn, "Dual polarized microstrip array for spaceborne SAR-application", in Proc. 3rd Joint Int. Conf. Electromag. Aerospace Applicat. and 7th European Electromag. Structures Conf., Turin , Italy, Sept. 14-17, pp.  423- 426. 
  22. F. Rostan, E. Heidrich and W. Wiesbeck, "High-performance C -band microstrip patch subarray with dual polarization capabilities ", in Progress Electromag. Res. Symp., Noordwijk, The Netherlands, July 11-15, 1994,
  23. F. Rostan, E. Heidrich and W. Wiesbeck, "Design of aperture-coupled patch arrays with multiple dielectric layers", in 23rd European Microwave Conf., Madrid, Spain, Sept. 6-9, 1993,
  24. F. Rostan, G. Gottwald and E. Heidrich, "Wideband aperture-coupled microstrip patch array for TV satellite reception", in 8th Int. Conf. Antennas Propagat., Edinburgh, U.K., Mar. 30-Apr.2, 1993,
  25. J. J. Nahas, "Modeling and computer simulation of a microwave-to-DC energy conversion element", IEEE Trans. Microwave Theory Tech., vol. MTT-23 , pp.  1030- 1035, Dec.  1975.