2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

The Generalized Scattering Matrix of Closely Spaced Strip and Slot Layers in Waveguide

Alexander B. Yakovlev , Member, IEEE Ahmed I. Khalil, Student Member, IEEE Chris W. Hicks, Student Member, IEEE Amir Mortazawi, Member, IEEE and Michael B. Steer Fellow, IEEE

Page 126.

Abstract:

In this paper, a method-of-moments integral-equation formulation of a generalized scattering matrix (GSM) is presented for the full-wave analysis of interactive planar electric and magnetic discontinuities in waveguide. This was developed to efficiently handle a variety of waveguide-based strip-to-slot transitions, especially on thin substrates. This single matrix formulation replaces the problematic procedure of cascading individual GSM's of an electric (strip) layer, a thin substrate, and a magnetic (slot) layer.

References

  1. R. York, and Z. Popović, Eds., Active and Quasi-Optical Arrays for Solid-State Power Combining, New York Wiley, 1997.
  2. A. Mortazawi, T. Itoh, and J. Harvey, Eds., Active Antennas and Quasi-Optical Arrays, Piscataway, NJ : IEEE Press , 1999.
  3. L. W. Epp and R. P. Smith, "A generalized scattering matrix approach for analysis of quasi-optical grids and de-embedding of device parameters", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  760 - 769, May  1996.
  4. S. C. Bundy and Z. B. Popović, "A generalized analysis for grid oscillator design", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2486- 2491, Dec.  1994.
  5. A. Alexanian, N. J. Kolias, R. C. Compton and R. A. York, "Three-dimensional FDTD analysis of quasi-optical arrays using Floquet boundary conditions and Berenger's PML ", IEEE Microwave Guided Wave Lett., vol. 6, pp.  138- 140, Mar.  1996.
  6. A. I. Khalil and M. B. Steer, "A generalized scattering matrix method using the method of moments for electromagnetic analysis of multilayered structures in waveguide", IEEE Trans. Microwave Theory Tech., vol. 47 , pp.  2151- 2157, Nov.  1999.
  7. R. E. Collin, Field Theory of Guided Waves, New York IEEE Press, 1991.
  8. C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory, Piscataway, NJ : IEEE Press, 1993.
  9. L.-W. Li, P.-S. Kooi, M.-S. Leong, T.-S. Yeo and S.-L. Ho, "Input impedance of a probe-excited semi-infinite rectangular waveguide with arbitrary multilayered loads-Part I: Dyadic Green's functions", IEEE Trans. Microwave Theory Tech., vol. 43 , pp.  1559- 1566, July  1995.
  10. G. V. Eleftheriades, J. R. Mosig and M. Guglielmi, "A fast integral equation technique for shielded planar circuits defined on nonuniform meshes", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2293- 2296, Dec.  1996 .
  11. A. I. Khalil, A. B. Yakovlev and M. B. Steer, "Efficient method-of-moments formulation for the modeling of planar conductive layers in a shielded guided-wave structure ", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1730- 1736, Sept.  1999.
  12. L.-W. Li, P.-S. Kooi, M.-S. Leong, T.-S. Yeo and S.-L. Ho, "On the eigenfunction expansion of electromagnetic dyadic Green's functions in rectangular cavities and waveguides", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  700- 702, Mar.  1995 .
  13. Y. Rahmat-Samii, "On the question of computation of the dyadic Green's function at the source region in waveguides and cavities", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  762 - 765, Sept.  1975.
  14. C.-T. Tai and P. Rozenfeld, "Different representations of dyadic Green's functions for a rectangular cavity", IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.  597- 601, Sept.  1976.
  15. A. B. Gnilenko and A. B. Yakovlev, "Electric dyadic Green's functions for applications to shielded multilayered transmission line problems", Proc. Inst. Elect. Eng., vol. 146, pp.  111- 118, Apr.  1999 .
  16. A.M. Lerer and A. G. Schuchinsky, "Full-wave analysis of three-dimensional planar structures", IEEE Trans. Microwave Theory Tech., vol. 41 , pp.  2002- 2015, Nov.  1993.