2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Mode-Transformation and Mode-Continuation Regimes on Waveguiding Structures

Alexander B. Yakovlev , Member, IEEE and George W. Hanson Senior Member, IEEE

Page 67.

Abstract:

In this paper, modal-interaction phenomena on guided-wave structures are investigated using the theory of critical and singular points. It has been previously shown that classical mode coupling is controlled by the functional characteristics of the dispersion equation in the vicinity of a Morse critical point (MCP), which is real valued for typical structures in the lossless case. The purpose of this study is to demonstrate that two distinct regimes of modal behavior exist in the vicinity of the mode-coupling region, which arise due to the presence of frequency-plane branch points of the dispersion function. These branch-point singularities are intimately associated with the MCP. It is further noted that which of the two regimes governs modal behavior depends on the path of frequency variation or on the presence of loss for time-harmonic problems. Specifically, classical mode coupling is associated with frequency variation between these branch points leading to mode transformation. This traditional mode-transformation behavior is eliminated for the path of frequency variation lying outside of this region resulting in mode continuation (no exchange of physical meaning between modes). The presence of these branch points completely explains the observed phenomena and allows for the conceptualization of the dispersion function in the vicinity of modal interactions.

References

  1. J. R. Pierce, "Coupling of modes of propagation", J. Appl. Phys., vol. 25, pp.  179- 183, 1954.
  2. D. Marcuse, "The coupling of degenerate modes in two parallel dielectric waveguides", Bell Syst. Tech. J., vol. 50, pp.  1791- 1816, 1971.
  3. A. W. Snyder, "Coupled mode theory for optical fibers", J. Opt. Soc. Amer., vol. 62, pp.  1267- 1277, 1972.
  4. A. Yariv, "Coupled mode theory for guided-wave optics ", IEEE J. Quantum Electron., vol. QE-9, pp.  919- 933, Sept.  1973 .
  5. H. A. Haus and W. Huang, "Coupled-mode theory", Proc. IEEE, vol. 79, pp.  1505- 1518, Oct.  1991.
  6. H. F. Taylor, "Optical switching and modulation in parallel dielectric waveguides", J. Appl. Phys., vol. 44, pp.  3257- 3262, 1973.
  7. H. C. Huang, "Coupled modes and nonideal waveguides", Polytech. Inst. of Brooklyn, Microwave Res. Inst., New York, Collected papers, Nov. 1981.
  8. M. A. McHenry and D. C. Chang, "Coupled-mode theory of two nonparallel dielectric waveguide system", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1469- 1475, Nov.  1984.
  9. D. Marcuse, "Directional couplers made of nonidentical asymmetric slabs-Part II: Grating-assisted couplers", J. Lightwave Technol., vol. LT-5, pp.  268- 273, Feb.  1987.
  10. S.-L. Chuang, "A coupled mode formulation by reciprocity and a variational principle", J. Lightwave Technol., vol. LT-5, pp.  5- 15, Jan.  1987.
  11. K. Yasumoto, "Coupled-mode formulation of multilayered and multiconductor transmission lines", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  585- 590, Apr.  1996.
  12. Y. Yuan and D. P. Nyquist, "Full-wave perturbation theory based upon electric field integral equations for coupled microstrip transmission lines ", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1576- 1584, Nov.  1990.
  13. G. W. Hanson and D. P. Nyquist, "Full-wave perturbation theory for the analysis of coupled microstrip resonant structures", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1774- 1779, Sept.  1992.
  14. P. N. Melezhik, A. Ye. Poyedinchuk, Yu. A. Tuchkin and V. P. Shestopalov, "Properties of spectral characteristics of the open two-mirror resonator", Dokl. Akad. URSR, no. 8, pp.  51- 54,  1987.
  15. P. N. Melezhik, A. Ye. Poyedinchuk, Yu. A. Tuchkin and V. P. Shestopalov, "Analytical nature of the vibrational mode-coupling phenomenon", Dokl. Akad. Nauk SSSR, vol. 300, no. 6, pp.  1356- 1359, 1988.
  16. I. E. Pochanina and N. P. Yashina, "Electromagnetic properties of open waveguide resonators", Electromag., vol. 13, pp.  289 - 300, 1993.
  17. V. P. Shestopalov, "Morse critical points of dispersion equations of open resonators", Electromag., vol. 13, pp.  239 - 253, 1993.
  18. V. P. Shestopalov, Physical Foundations of the Millimeter and Submillimeter Waves Technique, Vol. I, Utrecht, The Netherlands : VSP, 1997.
  19. A. B. Yakovlev and G. W. Hanson, "Analysis of mode coupling on guided-wave structures using Morse critical points", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  966- 974, July  1998.
  20. G. W. Hanson and A. B. Yakovlev, "Investigation of mode interaction on planar dielectric waveguides with loss and gain", Radio Sci., vol. 34, no. 6, pp.  1349- 1359, Nov.-Dec.  1999.
  21. G. W. Hanson and A. B. Yakovlev, "An analysis of leaky-wave dispersion phenomena in the vicinity of cutoff using complex frequency plane singularities ", Radio Sci., vol. 33, no. 4, pp.  803- 819, July/Aug.  1998.
  22. A. B. Yakovlev and G. W. Hanson, "On the nature of critical points in leakage regimes of a conductor-backed coplanar strip line", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  87- 94, Jan.  1997.
  23. G. W. Hanson and A. B. Yakovlev, "New explanation of the leaky mode phenomena in a coplanar strip line", in Int. Symp. Antennas Propagat., Chiba, Japan,Sept. 1996, pp.  277- 280. 
  24. G. W. Hanson, "An analysis of mode coupling on waveguiding structures from the theory of universal unfoldings", in USNC/URSI Nat. Radio Sci. Meeting, Atlanta, GA, June 1998, p.  161. 
  25. T. Poston and I. Stewart, Catastrophe Theory and Its Applications, London U.K. : Pitman, 1978.
  26. R. Gilmore, Catastrophe Theory for Scientists and Engineers, New York : Wiley , 1981.
  27. J. S. Bagby, C.-H. Lee, D. P. Nyquist and Y. Yuan, "Identification of propagation regimes on integrated microstrip transmission lines", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1887- 1893, Nov.  1993.
  28. H. Shigesawa, M. Tsuji and A. A. Oliner, "Simultaneous propagation of bound and leaky dominant modes on printed-circuit lines: A new general effect", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  3007- 3019, Dec.  1995 .
  29. G. W. Hanson and B. Ray, "Propagation characteristics of guided surface-wave modes on grounded slabs with anisotropic chirality", in Chiral'95, University Park, PA, Oct. pp.  127- 130. 
  30. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Vitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Norwood, MA : Artech House, 1994.
  31. A. Knoesen, T. K. Gaylord and M. G. Moharam, "Hybrid guided modes in uniaxial dielectric planar waveguides", J. Lightwave Technol., vol. 6 , pp.  1083- 1103, June  1988.