2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

An Efficient Full-Wave Method for Analysis of Dielectric Resonators Possessing Separable Geometries Immersed in Inhomogeneous Environments

Shu-Li Lin and George W. Hanson Senior Member, IEEE

Page 84.

Abstract:

In this paper, dielectric resonators possessing separable-coordinate geometries immersed in planarly-inhomogeneous media are analyzed using a volume electric-field integral-equation (IE)/Galerkin's technique. A three-dimensional complete entire-domain basis function set is utilized in numerically solving the IE. It is shown that a few terms of one physically significant subset of basis functions are usually sufficient for the accurate determination of complex resonant frequencies of cylindrical and rectangular resonators immersed in homogeneous and planarly inhomogeneous environments. The results using a few basis functions show good agreement with the previous literature, and new results are presented for some rectangular resonator geometries.

References

  1. R. Mongia and P. Bhartia, "Dielectric resonator antennas-A review and general design relations for resonant frequencies and bandwidth", Int. J. Microwave Millimeter-Wave Eng., vol. 4, pp.  230- 347, July  1994.
  2. A. Glisson, D. Kajfez and J. James, "Evaluation of mode in dielectric resonators using a surface integral equation formulation", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  1023- 1029, Dec.  1983.
  3. J. Pereda, L. Vielva, A. Vegas and A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of finite-difference time domain (FDTD) and Prony's methods", IEEE Microwave Guided Wave Lett., vol. 2, pp.  431- 433, Nov.  1992.
  4. A. Navarro and M. J. Nunez, "FDTD method coupled with FFT: A generalization to open cylindrical devices", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  870- 874, May  1994.
  5. W. Zheng, "Computation of complex resonance frequencies of isolated composite objects", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  953- 961, June  1989.
  6. R. Mongia, C. Larose, S. Mishra and P. Bhartia, "Accurate measurement of Q -factors of isolated dielectric resonators", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1463- 1466, Aug  1994 .
  7. R. E Collin, Field Theory of Guided Waves, New York: : IEEE Press, 1991.
  8. S. M. Shum and K. M. Luk, "Analysis of aperture coupled rectangular dielectric resonator antenna", Electron. Lett., vol. 30, no. 21, pp.  1726- 1727, Oct.  1994.
  9. R. W. Lyon and J. Helszajn, "Finite element analysis of planar circulators using arbitrarily shaped resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  1964- 1974, Nov.  1982.
  10. R. Mongia and A. Ittiiboon, "Theoretical and experimental investigation of rectangular dielectric resonator antennas", IEEE Trans. Antenna Propagat., vol. 45, pp.  1348- 1356, Sept.  1997.
  11. C. A. Balanis, Advanced Engineering Electromagnetics, New York : Wiley, 1989.
  12. V. H. Rumsey, "The reaction concept in electromagnetic theory ", Phys. Rev., vol. 94, pp.  1483- 1491, June  1954.
  13. E. W. Blumbergs, "Integral equation formulation for natural modes of a circular patch antenna in layered environment", Ph.D. dissertation, Dept. Elect. Eng., Michigan State Univ., Ann Arbor , MI, 1989.
  14. S.-L. Lin, " Propagation characteristics of anisotropic dielectric waveguides in the bound and leaky regimes", Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Wisconsin at Milwaukee, Milwaukee, WI, 1995.
  15. W. C. Chew, Waves and Fields in Inhomogeneous Media, New York : Van Nostrand , 1990, pp. 118-120.
  16. E. H. Newman and D. Forrai, "Scattering from a microstrip patch", IEEE Trans. Antenna Propagat., vol. AP-35, pp.  245- 251, Mar.  1987 .
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery , Numerical Recipes, Cambridge U.K. : Cambridge Univ. Press, 1992, p. 134.
  18. D. G. Dudley, "Comments on variational nature of Galerkin and non-Galerkin moment method solutions", IEEE Trans. Antenna Propagat., vol. 45, pp.  1062- 1063, June  1997.
  19. A. F. Peterson, D. R. Wilton and R. E. Jorgenson, "Variational nature of Galerkin and non-Galerkin moment method solutions", IEEE Trans. Antenna Propagat., vol. 44, pp.  500- 503, Apr.  1996.
  20. I. V. Lindell, "Variational methods for nonstandard eigenvalue problems in waveguide and resonator analysis", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  1194- 1204, Aug.  1982.
  21. A. W. Glisson, "Integral equation techniques," in Dielectric Resonators D. Kajfez, and P. Guillon, Eds. Norwood, MA : Artech House, 1986, ch. 6.
  22. K. Walters, , private communication, June 1998.
  23. S. Maj and J. W. Modelski, "Application of a dielectric resonator on microstrip line for a measurement of complex permittivity", in IEEE MTT-S Int. Microwave Symp. Dig., 1984, pp.  525- 527. 
  24. M. Jaworski and M. W Pospieszalski, "An accurate solution of the cylindrical dielectric resonator problem", IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.  639- 643, July  1979.
  25. J.-M. Guan and C.-C. Su, "Precise computations of resonant frequencies and quality factors for dielectric resonators in MIC's with tuning elements", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  439 - 442, Mar.  1997.
  26. R. K. Mongia, "Resonant frequency of cylindrical dielectric resonator placed on MIC environment", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  802- 804, June  1990.
  27. J. Van Bladle, "Weakly coupled dielectric resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  1907 - 1914, Nov.  1982.
  28. W. Zhang, "Direct and inverse resonance problems for shielded composite objects treated by means of the null-field method", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1732- 1739, Nov.  1989 .