2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Eigenvalue Equations and Numerical Analysis of a Coaxial Cavity with Misaligned Inner Rod

Shi-Chang Zhang and Manfred Thumm Senior Member, IEEE

Page 8.

Abstract:

Based on the Helmholtz equation, the superposition of cylindrical wave functions, and coordinates transformation, the eigenvalue equation is derived rigorously for a coaxial gyrotron cavity with a misaligned inner rod. It is shown that, due to the existence of the structural misalignment, any single normal mode of a perfect coaxial structure (i.e., without misalignment) no longer simultaneously satisfies both the outer and inner boundary conditions; consequently, the superposition of cylindrical wave functions must be taken into account. A numerical approach of solving the eigenvalue equation is proposed in this paper. As a practical application, analysis is given to the higher mode coaxial cavity employed in a 140-GHz/1.5-MW gyrotron device at the Forschungszentrum Karlsruhe, Karlsruhe, Germany. Result shows that the eigenvalue of the operating mode in a misaligned coaxial cavity is affected noticeably by the structural misalignment.

References

  1. M. Thumm and W. Kasparek, "Recent advanced technology in electron cyclotron heating systems", Fusion Eng. Des., vol. 26, pp.  291- 317, 1995.
  2. K. E. Kreischer, R. J. Temkin, H. P. Fetterman and W. J. Mulligan, "Multimode oscillations and mode competition in high-frequency gyrotrons", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  481- 490, May  1984.
  3. J. J. Barroso and R. A. Correa, "Design of a TE42, 7 coaxial cavity for a 1 MW, 280 GHz gyrotron", Int. J. Infrared Millim. Waves, vol. 13, pp.  443- 455, 1992.
  4. S. N. Vlasov, L. I. Zagryadskaya and I. M. Orlova, "Open coaxial resonators for gyrotrons ", Radio Eng. Electron. Phys., vol. 21, pp.  96- 102, 1976.
  5. G. S. Nusinovich, M. E. Read, O. Dumbrajs and K. E. Kreischer, "Theory of gyrotrons with coaxial resonators", IEEE Trans. Electron Devices, vol. 41, pp.  433 - 455, March  1994.
  6. S. C. Zhang, "Coaxial waveguide gyropeniotron", Int. J. Infrared Millim. Waves, vol. 7, pp.  867- 880, 1986.
  7. S. C. Zhang, "Bunching mechanism and kinetic analysis of a relativistic electron beam in centrifugal electrostatic focusing system ", Int. J. Infrared Millim. Waves, vol. 7, pp.  1497- 1510, 1986.
  8. S. C. Zhang, "Gyropeniotron focused by radial electrostatic field and axial magnetostatic field", Int. J. Electron., vol. 61, pp.  1081- 1091,  1986.
  9. S. C. Zhang and S. Liu, "Angular momentum effect and enhanced efficiency in electron cyclotron maser", Phys. Rev. A, Gen. Phys., vol. 38, pp.  849- 853, 1988.
  10. B. Piosczyk, et al. "A 1.5-MW, 140-GHz, TE 28, 16-coaxial cavity gyrotron", IEEE Trans. Plasma Sci., vol. 25, pp.  460- 469, June  1997.
  11. C. T. Iatrou, et al. "Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial RF output", IEEE Trans. Plasma Sci., vol. 25, pp.  470- 479 , June  1997.
  12. S. C. Zhang and M. Thumm, "Kinetic description of the influence of electron-beam misalignment on the performance of a coaxial-cavity gyrotron", Phys. Plasmas , vol. 3, pp.  2760- 2765, 1996.
  13. E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular inner conductor", Electron. Lett., vol. 5, pp.  251- 252, 1969.
  14. H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentric waveguides ", IEEE Trans. Microwave Theory Tech., vol. MTT-14, pp.  487- 493, Oct.  1966.
  15. G. I. Veselov and S. G. Semenov, "Theory of circular waveguide with eccentrically placed metallic conductor", Radio Eng. Electron. Phys., vol. 15, pp.  687- 690, 1970.
  16. M. J. Hine, "Eigenvalues for a uniform fluid waveguide with an eccentric-annulus cross-section", J. Sound Vibration, vol. 15, pp.  295- 305,  1971.
  17. J. R. Kuttler, "A new method for calculating TE and TM cutoff frequencies of uniform waveguides with lunar or eccentric annular cross section ", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  348- 354, Apr.  1984.
  18. B. N. Das and O. J. Vargheese, "Analysis of dominant and higher order modes for transmission lines using parallel cylinders", IEEE Trans. Microwave Theory Tech. , vol. 42, pp.  681- 483 , Apr.  1994.
  19. O. Dumbrajs and A. Pavelyev, "Symmetry breaking in coaxial cavities and its influences on gyrotron operation", Fusion Technol., vol. 1994-1, pp.  521- 524,  1994.
  20. O. Dumbrajs and A. Pavelyev, "Insert misalignment in coaxial cavities and its influences on gyrotron operation", Int. J. Electron., vol. 82, pp.  261- 268,  1997.
  21. J. A. Stratton, Electromanetic Theory, New York : McGraw-Hill, 1941.
  22. R. E. Collin, Field Theory of Guided Waves, New York : McGraw-Hill, 1960, ch. 5.
  23. G. N. Watson, Theory of Bessel Functions, London U.K. : Cambridge Univ. Press , 1952.