2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Balanced Monolithic Oscillators at K-and Ka-Band

Kian Sen Ang, Member, IEEE Michael J. Underhill and Ian D. Robertson Associate Member, IEEE

Page 187.

Abstract:

A technique for generating accurate antiphase signals is presented in this paper. Monolithic oscillators at 20 and 40 GHz are realized using this technique. These oscillators have dual outputs that are mutually locked in antiphase. The inherent amplitude and phase balances between the output signals are verified. This is achieved by direct measurement using injection-locking polar diagrams, as well as low-frequency measurements of the down-converted oscillator outputs. The operation of the balanced oscillator as a multidevice power-combining oscillator is also investigated. Improvements of phase noise reduction and frequency stabilization are demonstrated at the combined oscillator output. This new oscillator topology shows significant potential in balanced circuits like mixers, multipliers, and modulators where circuit performance relies on the precise generation of the balanced signals.

References

  1. R. Knochel, B. Mayer and U. Goebel, "Unilateral microstrip balanced and doubly balanced mixers", in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp.  1247-1250. 
  2. S. J. Parisi, "180° lumped-element hybrid", in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp.  1243-1246. 
  3. A. M. Pavio, et al. "Double-balanced mixers using active and passive techniques", IEEE Trans. Microwave Theory Tech., vol. 36 , pp.  1948-1957, Dec.  1988.
  4. A. H. Baree and I. D. Robertson, "Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  188-195, Feb.  1997 .
  5. A. M. Pavio and M. Smith, "Push-push dielectric resonator oscillator ", in IEEE MTT-S Int. Microwave Symp. Dig., 1985, pp.  266-269. 
  6. S. B. Moghe and T. J. Holden, "High-performance GaAs MMIC oscillators", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  1283 -1287, Dec.  1987.
  7. H. Yabuki, M. Sagawa and M. Makimoto, "Voltage controlled oscillators using miniaturized hairpin resonators", in IEEE MTT-S Int. Microwave Symp. Dig., 1991, pp.  1175-1178. 
  8. H. Yabuki, M. Sagawa and M. Makimoto, "New type of push-push oscipiliers for the frequency synthesizer", in IEEE MTT-S Int. Microwave Symp. Dig. , 1992, pp.  1085-1088. 
  9. J. Birkeland and T. Itoh, "Spatial power combining using push-pull FET oscillators with microstrip patch resonators", in IEEE MTT-S Int. Microwave Symp. Dig., 1990, pp.  1217-1220 . 
  10. X. Zhou and A. S. Daryoush, "An injection locked push-pull oscillator at Ku -band", IEEE Microwave Guilded Wave Lett., vol. 3, pp.  244-246, Aug.  1993.
  11. A. Mortazawi and B. C. De Loach, Jr., "Multiple element oscillators utilizing a new power combining technique", in IEEE MTT-S Int. Microwave Symp. Dig. , 1992, pp.  1093-1096. 
  12. A. P. S. Khanna and J. Obregon, "Direct measurement of the nonlinear MIC oscillator characteristics using injection locking polar diagram", in IEEE MTT-S Int. Microwave Symp. Dig., 1983, pp.  501-503. 
  13. K. Kurokawa, "An analysis of Rucker's multidevice symmetrical oscillator", IEEE Trans. Microwave Theory Tech., vol. MTT-18 , pp.  967-969, Nov.  1970.