2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Eigenvalues for Waveguides Containing Re-Entrant Corners by a Finite-Element Method with Superelements

Bernard Schiff and Zohar Yosibash

Page 214.

Abstract:

Superelements have been developed to enable the finite-element method to be used for computing accurate eigenvalues of the Laplacian over domains containing re-entrant corners of arbitrary angle. A truncated asymptotic expansion of the solution is employed in the region of the corner, and linear blending is used over the remainder of the superelement to provide a smooth transition to piecewise quadratics over the superelement boundary. The superelement thus conforms with the usual triangular or quadrilateral isoparametric elements used over the remainder of the domain, and can be easily incorporated into a general finite-element program. The scheme has been tested on various waveguides containing one or more angles of size 3/2 or 2\, and also on domains containing various other angles, and the results agree well with those obtained by other methods, mostly of less general applicability.

References

  1. J. P. Montgomery, "On the complete eigenvalue solution of ridged waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-19 , pp.  547-555, June  1971.
  2. D. Dasgupta and P. Saha, "Rectangular waveguide with two double ridges ", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  938-941, Nov.  1983.
  3. M. Swaminathan, E. Arvas, T. K. Sarkar and A. R. Djordjevic, "Computation of cutoff wavenumbers off TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  154-159, Feb.  1990.
  4. R. De Leo, T. Rozzi, C. Svara and L. Zapelli, "Rigourous analysis of the GTEM cell", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  488 -500, Mar.  1991.
  5. S. Shu, P. M. Goggans and A. A. Kishk, "Computation of cutoff wavenumbers for partially filled waveguides of arbitrary cross section using surface integral formulations and the method of moments", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1111-1118, June  1993.
  6. J.-M. Guan and C.-C. Su, "Analysis of metallic waveguides with rectangular boundaries by using the finite-difference method and the simultaneous iteration with the Chebyshev acceleration", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  374-381, Feb.  1995.
  7. M. Israel and R. Miniowitz, "An efficient finite-element method for nonconvex waveguides based on Hermitian polynomials", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  1019-1026 , Nov.  1987.
  8. Z. Pantic and R. Mittra, "Quasi-TEM analysis of microwave transmission lines by the finite-element method", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  1096-1103, Nov.  1986.
  9. J. M. Gil and J. Zapata, "Efficient singular element for finite-element analysis of quasi-TEM transmission lines and waveguides with sharp metal edges ", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  92-98, Jan.  1994.
  10. G. J. Fix, S. Gulati and G. I. Wakoff, "On the use of singular functions with finite-element approximations", J. Comput. Phys., vol. 13, pp.  209-228, Oct.  1973.
  11. J. P. Webb, "Finite-element analysis of dispersion in waveguides with sharp metal edges", IEEE Trans. Microwave Theory Tech., vol. 36 , pp.  1819-1824, Dec.  1988.
  12. B. Schiff, "Eigenvalues for ridged and other waveguides containing corners of angle 3/2 or 2 by the finite-element method", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1034-1039, June  1991 .
  13. Z. Yosibash and B. Schiff, "Superelements for the finite element solution of two-dimensional elliptic problems with boundary singularities", Finite Elements Anal. Des., vol. 26, pp.  315-335, Aug.  1997.
  14. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Englewood Cliffs, NJ: Prentice-Hall Inc., 1973.
  15. L. Fox, P. Henrici and C. Moler, "Approximations and bounds for eigenvalues of elliptic operators", SIAM J. Numer. Anal., vol. 4, pp.  89-102, Mar.  1967.
  16. B. Schiff and Z. Yosibash, ""Eigenvalues for the Laplacian over domains containing re-entrant corners by the finite element method," unpublished",
  17. H. H. Meinke, K. P. Lange and J. F. Ruger, "TE and TM waves in waveguides of very general cross section", Proc. IEEE, vol. 51, pp.  1436 -1443, Nov.  1963.
  18. A. F. Peterson, Computational Methods in Electromagnetism, Piscataway, NJ: IEEE Press, 1998.
  19. Z. Pantic-Tanner, J. S. Savage, D. R. Tanner and A. F. Peterson, "Two-dimensional singular vector elements for finite-element analysis", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  178-184, Feb.  1998.
  20. J. Gil and J. Webb, "A new edge element for the modeling of field singularities in transmission lines and waveguides", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2125-2130 , Dec.  1997.