2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Analysis of Elliptical Waveguides by Differential Quadrature Method

C. Shu

Page 319.

Abstract:

A new approach for elliptical waveguide analysis is presented in this paper. This approach applies the global method of a differential quadrature (DQ) to discretize the Helmholtz equation and then reduces it into an eigenvalue equation system. All the cutoff wavelengths from low-to high-order modes can be simultaneously obtained from the eigenvalues of the equation system. The present solver is general, which can be applied to elliptical waveguides with arbitrary ellipticity. It is demonstrated in this paper that the DQ results are in excellent agreement with theoretical values using just a few grid points and, thus, requiring very small computational effort.

References

  1. L. J. Chu, "Electromagnetic waves in elliptic hollow pipes of metal", J. Appl. Phys., vol. 9, p.  583, 1938.
  2. J. G. Kretzschmar, "Wave propagation in the hollow conducting elliptical waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-18 , pp.  547-554, Month  1970.
  3. D. A. Goldberg, L. J. Laslett and R. A. Rimmer, "Modes of elliptical waveguides: A correction", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1603-1608, Month  1990.
  4. B. K. Wang, K. Y. Lam, M S. Leong and P. S. Kooi, "Elliptical waveguide analysis using improved polynomial approximation", Proc. Inst. Elect. Eng., vol. 141, pp.  483-488, 1994.
  5. S. J. Zhang and Y. C. Shen, "Eigenmode sequence for an elliptical waveguide with arbitrary ellipticity", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  227-230, Jan.  1995.
  6. R. Bellman, B. G. Kashef and J. Casti, "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., vol. 10, p.  40, 1972.
  7. C. Shu, " Generalized differential-integral quadrature and applicaton to the simulation of incompressible viscous flows including parallel computation", Ph.D. dissertation, Dept. Aerospace Eng., Univ. Glasgow , Glasgow, Scotland, 1991.
  8. C. Shu and Y. T. Chew, "Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems", Commun. Numer. Methods Eng., vol. 13, pp.  643-653, 1997.
  9. C. Shu and B. E. Richards, "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations ", Int. J. Numer. Methods Fluids, vol. 15, pp.  791-798, 1992.
  10. H. Du, M. K. Lim and R. M. Lim, "Application of differential quadrature to vibration analysis", J. Sound Vibrations, vol. 181, p.  279, 1995.
  11. C. Shu, "Free vibration analysis of composite laminated conical shells by generalized differential quadrature", J. Sound Vibrations , vol. 194, p.  194, 1996.