2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Partially Prism-Gridded FDTD Analysis for Layered Structures of Transversely Curved Boundary

Chieh-Tsao Hwang, Shau-Gang Mao, Member, IEEE Ruey-Beei Wu, Senior Member, IEEE and Chun-Hsiung Chen Fellow, IEEE

Page 339.

Abstract:

In this paper, a partially prism-gridded finite-difference time-domain (FDTD) method is proposed for the analysis of practical microwave and millimeter-wave planar circuits. The method is featured by hybridizing the flexible prism-based finite-element method to handle the region near the curved metallization boundary and the efficient rectangular-gridded FDTD method for most of the regular region. It can be used to deal with shielded or unshielded planar components such as patch antennas, filters, resonators, couplers, dividers, vias, and various transitions between planar transmission lines. Although only representative structures, e.g., grounded via, through hole via, and coplanar waveguide to coplanar stripline transition, are analyzed in this paper, the underlined formulation is applicable to layered structures with arbitrary curved boundary in transverse direction. The accuracy of this method is verified by comparing the calculated results with those by other methods. Also, by the analysis of computational complexity, the present method is shown to be as efficient as the conventional FDTD method, with negligible overhead in memory and computation time for handling the curved boundary.

References

  1. K. W. Yee,"Numerical solution of initial boundary value problems in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-207, May  1966.
  2. R. Holland,"Finite-difference solutions of Maxwell's equation sin generalized nonorthogonal coordinates", IEEE Trans. Nucl. Sci., vol. NS-30, pp.  4589-4591, Dec.  1983.
  3. T. G. Jurgens, A. Talflove, K. Umashanker and T. G. Moore,"Finite-difference time-domain modeling of curved surfaces", IEEE Trans. Antennas Propagat., vol. 40, pp.  357-366,  Apr.  1992.
  4. C. H. Thng and R. C. Booton,"Edge-element time-domain method for solving Maxwell's equations", in IEEE MTT-S Int. Microwave Symp. Dig., June 1994, pp.  693-696. 
  5. S. Gedney and F. Lansing,"Full wave analysis of printed microstrip devices using a generalized Yee algorithm", in IEEE AP-S Dig., June 1993, pp.  1179-1182. 
  6. S. S. Zivanovie, K. S. Yee and K. K. Mei,"A subgridding method for the time-domain finite-difference method to solve Maxewell's equations", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  471-479 , Mar.  1991.
  7. D. T. Prescott and N. V. Shuley, "A method for incorporating different sized cells into the finite-difference time-domain analysis technique", IEEE Microwave Guided Wave Lett., vol. 2, pp.  434-436, Nov.  1992.
  8. D. J. Riley and C. D. Turner,"Interfacing unstructured tetrahedron grids to structuted-grid FDTD", IEEE Microwave Guided Wave Lett., vol. 5, pp.  284-286, Sept.  1995.
  9. K. S. Yee, J. S. Chen and A. H. Chang,"Conformal finite-difference time-domain (FD-TD) with overlapping grid", IEEE Trans. Antennas Propagat., vol. 40, pp.  1068-1075,  Sept.  1992.
  10. P. Mezzanotte, L. Roselli and R. Sorrentino, "A simple way to model curved metal boundaries in FDTD algorithm avoiding staircase approximation", IEEE Microwave Guided Wave Lett., vol. 5, pp.  267-279, Aug.  1995.
  11. R. B. Wu and T. Itoh,"Hybridizing FD-TD analysis with unconditionally stable FEM for objects of curved boundary", in IEEE MTT-S Int. Microwave Symp. Dig. , May 1995, pp.  833-836. 
  12. id="ref12" twemrule="yes"> R. B. Wu and T. Itoh,"Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements", IEEE Trans. Antennas Propagat., vol. 45, pp.  1302-1309 , Aug.  1997.
  13. W. K. Gwarek,"Analysis of an arbitrarily-shaped planar circuit-a time-domain approach", IEEE Trans. Microwave Theory Tech., vol. 33, pp.  1067-1072, Oct.  1985.
  14. A. C. Cangellaris, C. C. Lin and K. K. Mei,"Point-matched time domain finite-element methods for electromagnetic radiation and scattering", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1160-1173 , Oct.  1987.
  15. M. Righi, J. L. Herring and W. J. R. Hoefer,"Efficient hybrid TLM/mode-matching analysis of packaged components", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1715-1724, Oct.  1997.
  16. R. B. Wu,"A wide-band waveguide transition design with modified dielectric transformer using edge-based tetrahedral finite element analysis ", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1024-1031, July  1996.
  17. J. Jin, 2.1, 4.3, 8.1 The Finite Element Method in Electromagnetics, New York : Wiley, 1993.
  18. D. Koh, H. B. Lee and T. Itoh,"A hybrid full-wave analysis of via hole grounds using finite difference and finite element time domain methods ", in IEEE MTT-S Int. Microwave Symp. Dig., June 1997, pp.  89-92. 
  19. K. J. Bathe and E. L. Wilson, 7.2.4 Numerical Methods in Finite Element Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1976.
  20. R. J. Collins,"Bandwidth reduction by automatic renumbering", Inform. J. Numer. Method Eng., vol. 6, pp.  345-356, 1973.
  21. J. P. Berenger,"A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, Oct.  1994.
  22. G. Mur,"Absorbing boundary conditions for the finite-difference approximation of the time-domain elecytromagnetic-field equations", IEEE Trans. Electromag. Compat., vol. EC-23, pp.  377-382, Nov.  1981.
  23. K. K. Mei and J. Fang," Superabsorption-A method to improve absorbing boundary conditions", IEEE Trans. Antennas Propagat., vol. 40, pp.  1001-1010, Sept.  1992 .
  24. R. Sorrentino, F. Alessandri, M. Mongiardo, G. Avitabile and L. Roselli, "Full-wave modeling of via hole grounds in microstrip by three-dimensional mode matching technique", IEEE Trans. Microwave Theory Tech., vol. 40 , pp.  2228-2234, Dec.  1992.
  25. S. Maeda, T. Kashiwa and I. Fukai,"Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  2154-2159, Dec.  1991 .
  26. S. G. Hsu and R. B. Wu,"Full wave characterization of a through hole via in miltilayered packaging", IEEE Trans. Microwave Theory Tech., vol. 43 , pp.  1073-1081, May  1995.
  27. H. K. Chiou, C. Y. Chang and H. H. Lin,"Balun design for uniplanar broad band double balanced mixer", Electron. Lett., vol. 31, pp.  211-212, Nov.  1995.
  28. S. G. Mao, C. T. Hwang, R. B. Wu and C. H. Chen,"Analysis of coplanar waveguide-to-coplanar stripline transitions", IEEE Trans. Microwave Theory Tech., submitted for publication.