2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Reduction of Common-Source Inductance in FET/HEMT Structures Utilizing Wave-Propagation Effects

Saptharishi Sriram and Thomas J. Smith Jr. Member, IEEE

Page 406.

Abstract:

In this paper, a novel high-frequency/high-power field-effect-transistor structure is presented to reduce gain degradation caused by common-source inductance. In this structure, the reduction in common-source inductance is achieved without the need for using very thin substrates or very complicated fabrication technology, such as vias under each source finger. Using detailed transmission-line modeling, it is shown that a significant reduction in common-source inductance and improvement in RF performance can be achieved even for moderately high values of source grounding via inductance. The new structure allows simpler fabrication technology and is expected to be particularly useful to reduce the cost and improve the performance of high-power microwave and millimeter-wave devices and circuits.

References

  1. R. S. Pengelly, Microwave Field Effect Transistors-Theory, Design, and Applications , New York: Wiley, 1982.
  2. Y. Hirachi, Y. Takeuchi, M. Igarashi, K. Kosemura and S. Yamamoto,"A packaged 20 GHz 1-W GaAs MESFET with a novel via-hole plated heat sink structure", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  309-316, Mar.  1984.
  3. I. Drukier, R. Camisa, S. Jolly, H. Huang and Y. Narayanan,"Medium power GaAs field effect transistors ", Electron. Lett., vol. 11, p.  104, Mar.  1975.
  4. P. M. Smith, D. W. Ferguson, W. F. Kopp, P. C. Chao, W. Hu, P. Ho and J. M. Ballingal,"A high power, high efficiency millimeter-wave pseudomorphic HEMT", in IEEE MTT-S Int. Microwave Symp. Dig. , 1991, pp.  717-720. 
  5. W. Heinrich,"Distributed equivalent-circuit model for traveling-wave FET design", IEEE Trans. Microwave Theory Tech., vol. MTT-35 , pp.  487-491, May  1987.
  6. R. L. Chang, T. J. Shieh, W. A. Davis and R. L. Carter,"Modeling and analysis of GaAs MESFET's considering the wave propagation effect", in IEEE MTT-S Int. Microwave Symp. Dig. , 1989, pp.  371-374. 
  7. J. P. Mondal,"Lumped and distributed scaling of MESFET's ", in IEEE MTT-S Int. Microwave Symp. Dig., 1988, pp.  351-354. 
  8. S. J. Nash, A. Platzker and W. Struble,"Distributed small signal model for multi-fingered pHEMT/MESFET devices", in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp.  1075-1078. 
  9. W. Heinrich and H. L. Hartnagel,"Wave propagation on MESFET electrodes and its influence on transistor gain", IEEE Trans. Microwave Theory Tech., vol.  MTT-35, pp.  1-8, Jan.  1987.
  10. M. E. Goldfarb and R. A. Pucel,"Modeling via hole grounds in microstrip ", IEEE Microwave Guided Wave Lett., vol. 1, pp.  135-137, Jun.  1991.
  11. L. J. Giacoletto, Electronics Designers Handbook, New York: McGraw-Hill, 1977, sec. 24-19.