2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Scattering Matrix Approach for the Design of Microwave Filters

Riccardo Tascone, Patrizia Savi, Daniele Trinchero, Associate Member, IEEE and Renato Orta Senior Member, IEEE

Page 423.

Abstract:

A synthesis procedure, based on a distributed parameter model, for the design of microwave filters is presented in this paper. The frequency response of the filter is described in terms of the characteristic polynomial T21=S11/S21 where S11 and S21 are the scattering parameters of the filter. Starting from the desired polynomial T21, the design scheme directly yields the scattering parameters of the various junctions, which can be realized by any kind of discontinuity. The capability of synthesizing an arbitrary frequency response allows one to introduce the concept of a"predistorted" characteristic polynomial in order to compensate for the degradations caused by multimodal interactions, frequency dispersion, etc. Comparison with measured data of a Chebyshev-like eight-pole E-plane filter confirms the validity of the method also in presence of losses.

References

  1. C. Kudsia, R. Cameron and W.-C. Tang,"Innovations in microwave filters and multiplexing networks for communication satellite systems", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1133-1149, June  1992 .
  2. S. B. Cohn,"Direct-coupled-resonator filters", Proc. IRE , vol. 45, pp.  187-196, Feb.  1957.
  3. L. Young,"Direct-coupled cavity filters for wide and narrow bandwidths", IEEE Trans. Microwave Theory Tech., vol. MTT-11 , pp.  162-178, May  1963.
  4. G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, New York: McGraw-Hill, 1964.
  5. R. Levy,"Theory of direct-coupled-cavity filters", IEEE Trans. Microwave Theory Tech., vol. MTT-15, pp.  340 -348, June  1967.
  6. A. E. Atia and A. E. Williams,"Narrow-bandpass waveguide filters", IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp.  258 -265, Apr.  1972.
  7. J. D. Rhodes, Theory of Electrical Filters, New York: Wiley, 1976.
  8. R. J. Cameron,"General prototype network-synthesis methods for microwave filters", ESA J., vol. 6, no. 2, pp.  193-206, 1982.
  9. "IEEE Trans. Microwave Theory Tech.", vol. MTT-30, Sept.  1982.
  10. "IEEE Trans. Microwave Theory Tech.", vol. 30, July  1994.
  11. A. Abdelmonem, J.-F. Liang, H.-W. Yao and K. A. Zaki,"Full-wave design of spurious free D.R. TE mode band pass filters", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  744-752, Apr.  1995.
  12. R. Levy,"Direct synthesis of cascaded quadruplet (CQ) filters", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2940-2945, Dec.  1995.
  13. "Int. J. Microwave Millimeter Wave Computer-Aided Eng.", vol. 7, no. 2/3, Mar./May  1997.
  14. U. Papziner and F. Arndt,"Field theoretical computer-aided design of rectangular and circular iris coupled rectangular or circular waveguide cavity filters", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  462-471, Mar.  1993.
  15. M. Guglielmi,"Simple CAD procedure for microwave filters and multiplexers", IEEE Trans. Microwave Theory Tech., vol. 42 , pp.  1347-1352, July  1994.
  16. F. Alessandri, M. Dionigi and R. Sorrentino,"A full-wave CAD tool for waveguide components using a high speed direct optimizer", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2046-2052 , Sept.  1995.
  17. F. Arndt, Th. Sieverding, T. Wolf and U. Papziner,"Optimization-oriented design of rectangular and circular waveguide components with the use of efficient mode-matching simulators in commercial circuit cad tools", Int. J. Microwave Millimeter Wave Computer-Aided Design, vol. 7, no. 1, pp.  37-51, Jan.  1997.
  18. F. Alessandri, M. Mongiardo and R. Sorrentino,"New efficient full wave optimization of microwave circuits by the adjoint network method", IEEE Microwave Guided Waves Lett., vol. 3, pp.  414-416 , Nov.  1993.
  19. J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny and R. H. Hemmers, "Space mapping technique for electromagnetic optimization", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2536-2544, Dec.  1994 .
  20. R. Tascone, P. Savi, D. Trinchero and R. Orta,"A procedure for the design of microwave filters based on a distributed parameter model", in IEEE MTT-S Int. Microwave Symp. Dig. , June 8-13 1997, pp.  643-646. 
  21. R. S. Elliot, Antenna Theory and Design, Englewood Cliffs, NJ: Prentice-Hall, 1981.
  22. T. W. Parks and C. S. Burrus, Digital Filter Design, New York : Wiley, 1987.
  23. R. Levy,"Tables of element values for the distributed low-pass prototype filter", IEEE Trans. Microwave Theory Tech., vol. MTT-13 , pp.  514-523, Sept.  1965.
  24. L. Q. Bui, D. Ball and T. Itoh,"Broad-band millimeter-wave E-plane bandpass filters", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1655-1658, Dec.  1984.
  25. R. Vahldieck,"Quasi-planar filters for millimeter-wave applications", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  324-334, Feb.  1989.
  26. J. Bornemann and F. Arndt,"Modal S -matrix design of metal finned waveguide components and its application to transformers and filters", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  1528-1537, July  1992.
  27. D. Budimir,"Optimized E -plane bandpass filters with improved stopband performance", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  212-220 , Feb.  1997.